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INTRODUCTION 

One of the fundamental scientific issues of our time sounds like «How to explain 

the primordial nucleosynthesis in the Universe and predict its further evolution?» Once 

this question arises while reading Nobel monographs and reviews [1-7]. Maybe we 

have already some answers to this question, but it is no less interesting to continue 

investigations in this direction while applying modern experimental technique and 

novel theoretical developments.  

Let us first present the scale of events occurring on the macro level, but due to 

micro-processes. Just take a look around, and imagine for a moment that all of these 

things have never been – the Earth, planets, stars, constellations, the Milky Way, 

galaxies, and the Universe. How did it all come into existence? We already have the 

answer, – the Big Bang.  

After the Big Bang the creation of the Universe began. It started with the chain of 

synthesis of chemical elements, the first of which was the p(n,)d reaction. All that we 

see around us, and we ourselves, have come from these elements. Such a clear 

statement of the problem, «the beginning of everything», was the impetus for the 

development of the theory of nucleon-nucleon (NN) interaction. At present, several 

dozens of different NN-potentials have been built (Reid, Bonn, Paris, MSU, Nimegen, 

Almaty [8], and etc.), but the universal one that able to describe any processes does not 

exist. This a priori does not allow the construction of a unified theory of the atomic 

nucleus more complex than deuterium. 

The study of the subsequent synthesis of heavier chemical elements is based on 

microscopically justified models of the atomic nucleus from the point of view of 

quantum-mechanical principles, i.e. the principle according to which nucleons are 

combined together in the nucleus (Pauli Exclusion Principle was formulated by 

Wolfgang Pauli, Nobel laureate, in 1940). It should be note that the Pauli principle 

reflects the natural fact that all stable nuclear particles produced in the Big Bang are 

fermions or bosons. However, no one knows why this is the case. In the modern 

scientific world, one of the most widely recognized is the model known as the "resonant 

group method" (RGM), see, for example, [9-13]. 

Thus, in order to solve practical problems in the context of discussing the NN-

potential, some approximations are inevitable. 

We can consider the solution to the problem from another angle, if we pay 

attention to the fact that it is possible to design an effective and completely 

unambiguous nucleus-nucleus interaction potential [14]. One of the possible options 

lies in the fact that relying on the experimental data of elastic scattering, the observed 

energy spectra and asymptotic constants (ACs) for the bound states of particles, as well 

as measured geometric characteristics such as charge and mass radii etc. one able to 

reconstruct the interaction potentials in a fixed binary cluster channel. This approach 

is known today as the potential cluster model (PCM). 

 In the context of PCM, there are two ways to account for the fundamental Pauli 

principle. The first one involves the introduction of repulsion in the nuclear potential 

at small distances, i.e. a low probability of clusters overlapping or, in other words, their 
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isolation.is simulated. The second method is based on the introduction of a deep 

attraction potential, which implies the presence of forbidden by the Pauli principle 

states (FSs) in both discrete and continuous spectra.  

The deep or shallow nature of nucleus-nucleus interactions has been a 

controversial question for a long time, as they can both fit experimental scattering data 

rather accurately. In Schrodinger quantum mechanics, corresponding Hamiltonians are 

known as supersymmetric partners. However, their predictions differ in general for the 

case of radiative capture reactions. 

Therefore, our choice was the attractive nuclear potentials deep enough to enlarge 

the number of solutions, some of which can be identified as FSs [15]. Let us give a 

simple example. If we want to join to the nucleus of helium (4He) one more nucleon, it 

can only be placed in the p-shell; that configuration 5s is unphysical and should be 

forbidden. An allowed configuration is 4s1p. From the point of view of physics, it is 

necessary to eliminate the forbidden states. From the point of view of mathematics, 

elimination means that the wave functions of the forbidden states must be orthogonal 

to those of the allowed states. This is one of the key points used for the modification 

of PCM, so this option can be called the modified PCM (MPCM). 

This very approach has already been used for the description of total cross sections 

and astrophysical S-factors and, in some cases, the reaction rates of 30 thermonuclear 

process of radiative capture at astrophysical and thermal energies. The capture 

processes of nucleons in the following nucleon-nucleus channels have been considered: 

n2H, p2H, p3H, n6Li, p6Li, n7Li, p7Li, n8Li, p9Be, n9Be, n10Be, p10B, n10B, p11B, n11B,  

n12C, p12C, n13C, p13C, n14C, p14C, n14N, n15N, p15N, n16O, and p16O. Also the reactions 

with  -particles and deuterons, such as 2H3He, 2H4He, 3He4He, 3H4He, and 4He12C 

have been considered [16-21]. This approach allows to explain the experimental data, 

and in some cases, to predict reliably the behavior of astrophysical S-factors at low and 

ultralow energies [22, 23]. 

Some may correctly point out that, every second on the Sun and in stars, 

hundreds of nuclear reactions occur. Experimenters are trying to replicate many of 

these in laboratories (LUNA, CERN, etc.) on the most modern high-precision 

equipment.  However, theoretical investigations are able to reproduce, with a certain 

probability, a primordial nucleosynthesis in the Universe or in the various stellar 

cycles, determining their birth and further evolution. They are able not only to 

explain, but also to predict the behavior of the reaction rates and the S-factors. 

Further we are going to present a wonderful examples of the possibilities of MPCM, 

radiative neutron capture processes 3He(2H, γ)5Li  and  
1110 Be , Ben   (in Sections 3 

and 4, respectively). 

It is actual to develop and substantiate the mathematical formalism for the 

construction of the binary intercluster potentials abV . Their reliability should be 

checked on the special processes provided by the experimental data. This, in its turn, 

gives the opportunity to define the limitation conditions for the cluster model approach. 

Point out our choice of the cluster model approach for the 3He(2H, γ)5Li reaction 

and its role in BBN, the actual statements are the following. The interest to the radiative 

capture reactions in the isobar-analogue channels 3He(2H, γ)5Li and 3H(2H,γ)5He is 
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primarily due to the two reasons: these reactions are parts of nucleosynthesis chain of 

the processes occurring in the early stages of a stable star formation, as well as possible 

candidates for the overcoming of the well-known problem of the А = 5 gap in the 

synthesis of light elements in the primordial Universe [24] and application of these 

processes for the diagnostics of nuclear fusion efficiencies of 2H(3H, n)4He and 
2H(3He, p)4He reactions used for experimental studies of tokamak plasmas [25, 26]. 

It is believed that the 3He(2H, γ)5Li process is well studied experimentally. Since 

1954 [27] a sufficient number of experimental works, see, for example, works [28-32], 

are devoted to study this process, and the most recent data are presented in scientific 

publication [33], including compilations of experimental data on cross sections, 

astrophysical factors and rates of this reaction at energies less than 200 keV [26, p. 2, 

34]. However, in our opinion, the experimental and theoretical situation is far from 

unambiguous and requires systematic analysis, which is implement in this thesis. 

There is another «unambiguous» opinion: due to the smallness of the cross section 

the 3He(2H, γ)5Li reaction does not contribute to the astrophysical processes [35]. In 

this research we demonstrate that this statement is disputable, since the rate of this 

reaction is not negligible.  

In addition, a possible scenario for astrophysical processes of 6Li formation 

involving a short-lived 5Li isotope is considered. The two-step process 2H + 3He  
5Li +  and n + 5Li +  6Li +  is considered and discussed as an alternative way of 

the formation of 6Li at the BBN. 

The purpose of the research in Section 4 is to bring the reliable input in the “round-

table” discussion on the relative boron-beryllium branching leading to the production 

of carbon component both in the astrophysical processes, and terrestrial reactor 

constructive problems which may overlap in some temperature ranges. We have been 

motivated by a set of excellent papers and reviews cited covering the pre-history of the 

rising questions directly in references within the developing research. 

The n+10Be11Be+γ reaction enters into one of the chains of primordial 

nucleosynthesis in the early Universe [36] 

 

…8Li(n,γ)9Li(β-)9Be(n,γ)10Be(n,γ)11Be(β-)11B(n,γ)… 

 

owing to that the elements with А > 11-12 can be synthesized (see for example [37]). 

The alternative scenarios concept Fusion Reactions in Supernovae and the Early 

Universe was suggested in conceptual work [38] where two possible scenarios for r-

processes conditional on  -induced reactions and competitive (n,γ) neutron radiative 

capture processes were analyzed in detail. (n,γ) channels possibility justification was 

given, i.e. when 10Be(α,γ)14C reaction is excluded,  

 
9Be(n,γ)10Be(n,γ)11Be(n,γ)12Be(β-)12B 

 

reactions chain is started.  

Authors of [38, p. 474] had concluded that taking into account the reactions with 

light neutron excess nuclei could change an estimation of heavy elements abundance 

up to order 10!  
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However, it is clear to realize it we need reliable reaction rate data for many 

reactions including (n,γ) processes, and some of that are given in [23, p. 35-208]. 

Therefore, new and more accurate calculations of these reactions rates presented in the 

current work enable us to specify conclusions given in [38, p. 478].  

Another story appeared in works [39, 40] devoted to fusion reactions in 

Supernovae the chain of reactions with boron isotopes  

 
AB(n,γ)A+1B (A = 11,12,13), 

 

was accentuated. This chain leads further to one of the variants of carbon isotopes (up 

to 19C) synthesis initiation. In addition, presented here calculations for n+10Be  
11Be+γ process will allow clarifying the issues formulated in [40, p. 1173-1189]. The 

later detailed review suggests the comparative analysis for the reaction rates of 18 

reactions providing the boron path leading to carbon isotopes abundance as the 

background for the synthesis of heavier elements. We regard the question on the 

dominating path is still open. At a time, we are going to analyze various interpretations 

of [38, p. 474] and [39, p. 301-308, 40, p. 1173-1189]. 

Purpose of research is a development of the formalism for the phase shift 

analysis of high-spin scattering processes, as well as approbation and analytical 

evaluation of methods for constructing interaction potentials in binary cluster channels, 

applicable for solving astrophysical problems. 

Research objectives: 

1. To develop a formalism of the phase shift analysis for the systems with spin 

structures 1+1/2, 1+3/2 and 1+1; To develop a computer program for calculating the 

scattering phase shifts; 

2. To analyze alternative methods for obtaining the scattering phase shifts and 

building interaction potentials in binary cluster channels; 

3. To construct the binary interaction potentials at low and astrophysical energies 

within the modified potential cluster model approach for the reactions 3 2 5He( H, ) Li  

and  
1110 Be , Ben  ; 

4. To calculate the total cross sections, astrophysical S-factors and rates of the 

reactions 3 2 5He( H, ) Li  and  
1110 Be , Ben  . 

Research objects are the binary cluster systems of light nuclei. 

Research subjects are the scattering processes of spin particles in binary channels 

and radiative capture reactions at astrophysical energies. 

Research methods: quantum theory of the angular momentum, partial waves 

method, numerical methods for solving the Schrödinger equation. 

Defense Provisions: 

1. The differential scattering cross sections for processes with channel spin 

1/ 2S   are universal in the framework of the quantum theory of collisions taking into 

account spin-orbit and spin-spin interactions without restrictions on the number of 

partial waves and the channel spin value. 

2. The two-step mechanism for the synthesis of  6Li nuclei in the Big Bang, 

which consists of the reactions 2H + 3He  5Li +  and n + 5Li +   6Li + , calculated 
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on the basis of total cross sections, astrophysical S-factor, and 3 2 5He( H, ) Li  reaction 

rate for energies up to 5 MeV in the framework of the modified potential cluster model 

using forbidden states explains the 6Li/7Li ratio in the Universe. 

3. The modified potential cluster model with forbidden states reproduces the 

available experimental data on the total cross sections for radiation capture of neutrons 

on a 10Be nucleus in the energy range from 25.3 meV to 10.0 MeV. 

 Scientific novelty: 

1. A universal mathematical formalism is developed for constructing elastic 

scattering cross sections for multiplet states (from singlet with 2S+1=1 to sextet with 

2S+1=6), which consider the spin-orbit and spin-spin interactions and allows one to 

perform the phase shift analysis taking into account any number of partial waves. 

2.  The experimental total cross sections of the 3He(2H,γ)5Li process at energies 

up to 5 MeV is reproduced in the framework of the modified potential cluster model. 

The role of the 3He(2H,γ)5Li process for the formation of 6Li in the Big Bang 

nucleosynthesis (BBN) via its participation in a two-step mechanism 2H + 3He  5Li 

+ ; n + 5Li +   6Li +  has been established. 

3. Experimental data for the total cross sections of radiative capture of neutrons 

on the 10Be nucleus are reproduced in the framework of the modified potential cluster 

model with forbidden states, and the rate of this reaction was calculated in the energy 

range from 25.3 meV to 10.0 MeV. 

Theoretical and practical significance  

The formalism presented for the scattering matrix of particles with a spin structure 

1 2 1 1 / 2s s   , 1 2 1 / 2 3 / 2s s   , and 1 2 1 1s s    in the form of expansion in 

partial amplitudes allows one to carry out a sequential phase shift analysis of 

experimental data both in elastic and inelastic scattering. The same amplitudes are 

structural elements for calculating polarization characteristics such as asymmetry of 

the angular distribution, vector and tensor polarizations, and polarization transfer 

coefficients. 

The application area of the obtained mathematical formalism is not limited only 

to astrophysical problems; it can be used, for example, in the study of low-energy 

processes in plasma physics, in particular, to take into account quantum-mechanical 

effects, as well as in problems of hadron and meson scattering in intermediate-energy 

physics. 

The analytical expressions for calculating the elastic scattering cross sections for 

any integer or half-integer values of the channel spin, due to their universality, open up 

the possibilities for the most optimal phase shift analysis for cases of one open channel 

in nuclear reactions. Such calculations are relevant, in particular, for taking into 

account quantum-mechanical effects in plasma, or molecular systems. 

A detailed phase shift analysis further opens up the possibility of constructing 

binary interaction potentials of varying complexity – central, spin-spin, tensor, etc. In 

the future, based on the presented analytics, it is possible to create program codes and 

software for the consistent phase shift analysis based on the modern experimental data. 

In the framework of the MPCM, the possibility of extracting the scattering phase 

shifts in an indirect way was demonstrated, namely, from experimental data on the 
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spectra of light nuclei – excitation energies cmE , level widths  , quantum 

characteristics J
, and also asymptotic normalization coefficients.  

As an illustration of the MPCM capabilities, the process of radiative capture of 

neutrons  
1110 Be , Ben   in the energy range 25.3 meV  10.0 MeVE   is studied. The 

calculation of the total cross sections shows good agreement with the experimental data 

reconstructed from the measurements of Coulomb dissociation. To date, studies of 

stellar dynamics have relied on the only modelless calculations of Rauscher, 1993 for 

the reaction rate [41]. Our < v>  calculations of the reaction  
1110 Be , Ben   differ 

significantly from the Rauscher’s data and, thus, can significantly change the idea of 

the role of the beryllium chain in the overall macroscopic picture of the fractions of the 

masses of light elements at an early stage of the evolution of the Universe. 

In the framework of the MPCM, the cross sections of the 3H3He and n5Li 

processes of radiative capture and their analytical parameterization were calculated. 

Based on these results, the reaction rates of these processes were calculated, their 

parameterization was obtained, and a comparison was made with the 2H3He and 2H4He 

capture reactions rates.  

Based on comparisons of the rates of these reactions and the prevalence of light 

elements, it has been suggested that the two-step process 2H + 3He  5Li +  and n + 
5Li +   6Li +  can make a certain contribution to the formation of 6Li at BBN, 

especially at temperatures T9 of the order of unity. In this temperature range, the 

number of neutrons has not yet begun to decrease, and the number of 2H deuterium 

nuclei and 3He isotope is already reaching its maximum, which leads to an increase in 

the yield of the 2H + 3He  5Li +  reaction. Thus, additional quantitative calculations 

of the contribution of this reactions to the accumulation of the 6Li nucleus at BBN, in 

stars, and other astrophysical processes are required. 

Personal contribution of the author. Alessya Tkachenko took part in all stages 

of research, including the development of a formalism for phase shift analysis and the 

MPCM implementation for studying astrophysical processes 3 2 5He( H, ) Li  and 

 
1110 Be , Ben  . Research work was carried out at Al-Farabi Kazakh National 

University, as well as during a foreign internship held at the City University of New 

York (CUNY, New York, USA). 

Research approbation and publications. The main results from the dissertation 

were published in local and Russian journals: International Journal of Mathematics 

and Physics [42], Russian Physics Journal [43-44], News of NAS RK [45]; in foreign 

scientific journals with impact-factor: Nuclear Physics A [46, 47] and Astroparticle 

Physics [48]; and also were reported and discussed at the following conferences: the 

9th International Scientific Conference “Modern Achievements of Physics and 

Fundamental Physical Education” (October 12-14, 2016, Kazakhstan, Almaty) [49], 

the International Conference of Students and Young Scientists "Farabi Alemy" (April 

10-13, 2017 and April 9-12, 2018, Almaty, Kazakhstan) [50-53], the International 

Scientific Forum "Nuclear Science and Technology" (September 12-15, 2017, Almaty, 

Kazakhstan) [54], the International Conference on Few-Body Problems in Physics 

(FB22) (July 9-13, 2018, Caen, France) [55]. 
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The reliability of the results, first of all, is due to the fact that the calculations use 

the algebraic methods of the quantum theory of angular momentum. Moreover, the 

construction of interaction potentials and calculations of the characteristics of radiative 

capture reactions based on modern experimental data on level spectra, their width, 

asymptotic constants (ACs), cross sections and astrophysical S-factors. The reliability 

and validity of the results is also confirmed by publications in journals recommended 

by the Committee for Control of Education and Science of the Ministry of Education 

and Science of the Republic of Kazakhstan, as well as in the proceedings of 

international scientific conferences. 

 The connection of the thesis with research programs. The research work is 

carried out in accordance with the following programs: 

1. “Study of the thermonuclear processes in the Universe” (0073-8/ПЦФ-15-
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2. “Study of thermonuclear processes in stars and the primordial nucleosynthesis 
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Conclusion, References and two Appendixes. It contains 19 figures and 14 tables. 

References consists of 146 items. The thesis is set out on 129 pages of printed text. 
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 1 CONSTRUCTION OF A SCATTERING MATRIX IN CHANNELS 

WITH A SPIN STRUCTURE 1/2+1, 1/2+3/2 AND 1+1 

Phase shift analysis is usually performed on the basis of expressions for the elastic 

scattering cross sections of nuclear particles, namely, on the basis of the representation 

of the differential cross sections for the elastic scattering through the phase shifts of 

elastic scattering [56-57]. 

Many of these expressions can be found in the scientific literature, and were 

subsequently collected in books [58] and [57, p. 120-136]. For example, the scattering 

of spinless particles on a zero spin target and a system of non-identical particles with a 

channel spin S = 1/2, such as N−4He, is described in detail in works [57 P. 120-136, 

59]. However, a particular difficulty is the calculation of differential cross sections for 

high-spin states (channel spin S > 1) of a system of particles. Results for a high channel 

spin, in particular, for a particle system with the spin structure 1/2 + 1 and 1/2+3/2 were 

given in Refs. [60] and [61], respectively.  

However, we still lack fully analytical expressions for calculations of the 

differential elastic scattering cross sections for half-integer channel spins S = 3/2 and 

S = 5/2 and integer channel spins S = 1 and S = 2.  

This Section covers the scattering phase shift formalism for the high-spin nuclear 

processes. In other words, one can find here the analytical expressions for the partial 

and total differential cross sections for the processes with the spin structures 1+1/2, 

1+3/2 and 1+1 to extract the scattering phase shifts, and under the high-spin processes 

are meant states with the channel spin 1S  . The corresponding independent partial 

amplitudes for each channel spin are obtained. These expressions are presented for 

arbitrary orbital angular momentum  and taking into account spin-orbit splitting. 

 In addition, one can find in this Section the relation of parameters in the 

laboratory system and in the center of mass system, which can be useful in the available 

experimental data processing. 

 

1.1  Theoretical formalism for particles with spins 

Begin our discussion by considering a collision of two particles with spins. Only 

one of the particles can be a nucleon (in this case, the second particle is a proton or 

neutron) or both collision participants can be nuclei. When the two colliding particles 

have spins, these spins may be reoriented by the scattering process even if internal 

excitations of nuclei do not occur. The total angular momentum and its projection are 

conserved so that flipping one spin, which is related to changing the value of its 

projection on the z-axis, is compensated by a flip of the other or by an exchange of 

angular momentum with the relative orbital motion. In the latter case, the plane of the 

orbits is tilted [46, p. 3]. 

For the elastic scattering channel, the differential cross section can be written as 

[58, p. 171] 

 

'

( )
( ) ,

S

d d S
g S

d d

 


 
   (1.1) 

 



12 

 

where g(S) is the statistical weight for channel spin S 

 

  1 2

2 1
( ) .

2 1 2 1

S
g S

s s




 
 (1.2) 

 

The spin of the scattering reaction channel is the result of the vector addition of 

the spins 1s  and 2s  of the incident and target particles and is 

 

1 2 1 2 = + , .s s S s s   
1 2

S s s  (1.3) 

 

In the general case, the partial differential cross sections can be written as 

 

*
' ' ' '

' '

( )
( ) ,S S

S S

SS

d S
g S M M

d

 
 







  (1.4) 

 

where ' '
S
SM 

  are the matrix elements of the transition M-matrix [46, p. 3].  

Here we consider the general case where the spins of both particles are coupled 

via the interaction potential (interaction potentials is described in more detail in 

Subsection 1.5). For an elastic scattering, when ',S S  equation (1.4) describes the 

partial cross section in equation (1.1).  

In the channel spin representation, the relationship between the transition M-

matrix and the scattering or collision matrix U is described by the expansion of the 

scattering amplitude in terms of the Legendre polynomials ( )m
nP   as [62]: 

 

   

' ' ' ' 0 ' ' ' '

'

'

' ' ' ' ' '

( ' ')!
( ) ( )

2 ( ' ')!

exp ( ) .

S J J

S c SS s s m

J

J m

SS S S

i m
M f C C

k m

i U P


  

      

    

 
  



     


 (1.5) 

 

In this case the initial and final channel spins S  and 'S  may take any possible values. 

In equation (1.5) the following notations are used: S  and 'S  are the spins of the 

initial and final channels, respectively,   and '  are their projections on the z-axis,  

and '  are the orbital quantum numbers of the initial and final channels, c

a bC 

   are the 

Clebsch-Gordan coefficients,   are the Coulomb scattering phase shifts, and ' '

J

S SU


 

is the scattering matrix. The primes hereinafter indicate the characteristics of the final 

state. The Coulomb amplitude is defined as follows 

 

 2
02

( ) exp ln sin ( / 2) 2 .
2 sin ( / 2)

cf i i
k


   



 
      

 
 (1.6) 
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In equation (1.6)   is the scattering angle, k is the wave number of the relative 

motion of the colliding particles, 
2 22 / ,k E  where   is the reduced mass of the 

particles and E is the energy of colliding particles in the center of mass system (the 

relation between parameters in different reference systems is covered by Subsection 

1.6), and 
2

1 2

2

Z Z e

k


   is the Coulomb parameter, where Z is the particle's charge in 

units of the elementary charge.  

For a proper description of the scattering cross section, it is sufficient to take into 

account only elastic channels. Then the collision U-matrix takes the form: 

 

 exp 2 .S SU i  (1.7) 

 

The description of partial differential cross sections requires only those 

amplitudes for which 'S S . The matrix elements with 'S S  can be used for 

calculations of polarization effects, which require the consideration of spin-mixing 

states. For analytical calculations of elastic scattering cross sections i.e. for the case 

when the spins of the initial and final channels have the same value ( 'S S ) it is 

convenient to present the partial amplitudes of the M-matrix in a more succinct form 

[46, p. 4].  

For this case the expression (1.5) could be written in the following form 

 

     ' ' 0 ' ,0 ,
S

S J J S

S S S m J m

J m

M M C C A Y
   

         (1.8) 

 

where 

 

 
      

    

1/2

1/2

θ 2 1 exp 2 1 , ν ν ;π

2 1 exp 2 1 , ν ν .

J

c Ss

J
J

S

f i i U if
A

k i i U if






     
 

   

 (1.9) 

 

In the next step we perform the recoupling procedure for the Clebsch-Gordan 

coefficients in equation (1.8) using the relevant expression from [63] 

 

   1 2 1 ,
c dd d c c

a f b e a b f e

c

a b c
C C d C C

e f d

    

       


  

 

 
    

 
  (1.10) 

 

where 
...

...

 
 
 

 are Wigner 6j-symbols. Therefore, using one-to-one correspondence for 

the    a f d S J  and    b e d S J  we can transform the 

product of the Clebsch-Gordan coefficients as 
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   
'

0 ' ' 01 2 1 .
JJ J m m

S S m S S m

m

S S
C C J C C

J

    

   


 



 
    

 
  (1.11) 

 

According to the rules of addition of angular momenta, the summation by   in 

equation (1.11) includes the integers in the intervals 0 2S   and 0 2   [46, p. 

5]. 

Using the following symmetry properties of the Clebsch-Gordan coefficients [63, 

p. 207-210] 

 

 1 ,
a b cc c

a b b aC C 

   

 
   

 
2 1

1 ,
2 1

a bc a

a b c b

c
C C

a

 

   

 




 


 

 1 ,
a b cc c

a b a bC C 

   

  

    

(1.12) 

 

the first coefficient '

m

S SC

   in equation (1.11) can be rewritten as 

 

 
'

' '

2 1
1 .

2 1

Sm S

S S mSC C
S

  

   

 




 


 (1.13) 

 

Thus, equations (1.9), (1.11) and (1.13) allow one to obtain the following form of 

the matrix elements  '

S

M


   [46, p. 5]: 

 

       ' 0

2 1
1 2 1 ,0 .

2 1

S J S S m S

mS m J m

J m

S S
M J C C A Y

JS

  
  




 

  
    

  
  (1.14) 

 

Let us turn now to the construction of the differential cross section based on the 

 '

S

M


   matrix elements. According to equation (1.1) the differential cross section can 

be written as 

 

*
' '

'

( ) .
S S

S

d
g S M M

d

 
 







  (1.15) 

 

Substituting equation (1.14) into (1.15) we can perform the external summation 

over   and '  using the well-known relation for the Clebsch-Gordan coefficients [63, 

p. 219] 

 
2

'

' ' '2

П
,

П

c c c
a b a b bb

a b

C C 

    


   where 

    ...П 2 1 2 1 ... 2 1 .ab c a b c     

(1.16) 
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The application of (1.16) leads to 

 

' ' ' ' ' '

'

2 1
.

2 1

S S

mS m S mm

S
C C 

    


 






  (1.17) 

 

Thus, considering (1.14) and (1.17) in equation (1.15), we obtain the final 

expression for the differential cross section as follows [46, p. 5]: 

 

      
2

01 2 1 ,0 .J m S

m J m

S J m

S Sd
g S J C A Y

Jd








 
    

  
   (1.18) 

 

It should be noted that this expression for the differential cross section has a 

universal form and can be applied to any processes of elastic scattering, regardless of 

whether the channel spins are integer or half-integer. 

In Table 1.1 [46, p. 6] the particles and light nuclei with the spins 1/2, 1, 3/2 and 

2 relevant to the nucleosynthesis chain of light elements in the primordial Universe are 

listed. 

 

Table 1.1. Possible incident particles and targets. J  is the angular momentum and 

parity.  

 

Z Particle J  Half-life  Z Particle J  Half-life 

0 n 1/ 2  880,0 ± 0,9 s  5 9B  3 / 2
 8,00(300)×10−16 s 

1 p 1/ 2  Stable  5 11B  3 / 2
 Stable 

1 d 1
 Stable  5 12B  1

 20,20(2)×10−3 s 

1 3H  1/ 2  12,32(2) years  5 14B  3 / 2
 12,5(5)×10−3 s 

1 4H  2
 1,39(10)×10−22 s  5 15B  2

 9,93(7)×10−3 s 

2 3 He  1/ 2  Stable  5 17 B  3 / 2
 5,08(5)×10−3 s 

3 4Li  2
 91(9)×10−24 s  6 9C  3 / 2

 126,5(9)×10−6 s 

3 5 Li  3 / 2
 370(30)×10−24 s  6 11C  3 / 2

 20,334(24) min 

3 6Li  1
 Stable  6 13C  1/ 2  Stable 

3 7 Li  3 / 2
 Stable  6 15C  1/ 2  2,449(5) s 

3 9Li  3 / 2
 178,3(4)×10−3 s  6 17C  3 / 2

 193(5)×10−6 s 

3 10 Li  1
 2,0(5)×10−21 s  6 19C  1/ 2  46,2(23)×10−6 s 

4 7 Be  3 / 2
 53,22(6) days  7 10 N  2

 200×10−24 s 

4 9 Be  3 / 2
 Stable  7 13 N  1/ 2  9,965 min 

4 11Be  1/ 2  13,81(8) s  7 15 N  1/ 2  Stable 

5 7 B  3 / 2
 3,50(50)×10−20 s  7 16 N  2

 7,13 s 

5 8B  2
 770(3)×10−3 s      
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Table 1.1 clearly demonstrates possible participants of the scattering processes 

with the spin structure 1/2+1, 1/2+3/2 and 1+1. 

 

1.2 Processes with spin-1/2 – spin-3/2 

Let us consider the spin states for the collision of two particles with spin 1/2 and 

3/2. In this case the collision of the following particles according to Table 1.1 can be 

considered: n, p, 
3 +H(1/2 ),  or 

3 +He(1/2 )  as the first particle and 
5 Li(3/2 ),

 
7 Li(3/2 ),

 
9 Li(3/2 ),

 
7 Be(3/2 ),

 
9 Be(3/2 ),

 
7 B(3/2 ),

 
9 B(3/2 ),

 
11B(3/2 ),

 
13B(3/2 ),

 
15 B(3/2 ),

 
9 C(3/2 ),

 
11C(3/2 ),

 
17 C(3/2 ),

 or 
13O(3/2 )

 as the second one [44, p. 1041, 

46, p. 6]. 

In this case, according to the vector addition rule (1.3), the channel spin can be 

1S   and 2S  . For the channel with the integer spin values 1 and 2, the M-matrix, 

similar to scientific paper [60, p. 254], is represented as [46, p. 6] 

 

22 2 2 11 10 1 122 21 20
2 2 2 2 2 22 22 2 2

22 21 20 2 1 22 11 10 1 1
1 1 1 1 1 21 21 2 1

22 21 20 21 22 11 11
0 0 0 0 0 20 20

22 2 1 20 21 22 1 1 10 11
1 1 1 1 1 2 1 21 21

22 2
2 2

22 2 1 20 2 1 2 2 1 1 1 0 1 1

' '

2 2

2 1

2 0 0

2 1

2 2

S

S

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q

Q Q Q Q Q
M

Q Q

 


 


 





   









    




M M M

M M M

M M

M M M

1 20 22 1 1 10 1121
22 2 2 2 22 22

22 21 20 2 1 2 2 11 10 1 1
11 11 11 1 1 1 1 1 1 1

22 21 21 22 11 10 11
10 10 10 10 0 0 0

2 2 2 1 20 21 22 1 1 10 11
1 1 1 1 11 11 11 1 1 1

1 1

1 0 0

1 1

Q Q Q

T T T

T T T

T T T



  

  

 

 

   

M M M

M M M M M

M M M M

M M M M M

 

(1.19) 

 

 In matrix (1.19) we use the letters T  and Q  for the notation of triplet and quintet 

spin states for partial amplitudes and the Fraktur letter  M  denotes the and spin-mixing 

states partial amplitudes, respectively. We especially labeled spin-mixing states by the 

letter M  to avoid later confusion with the general labeling of matrix elements of the 

M-matrix [46, p. 6]. 

The matrix (1.19) has in total 64 partial amplitudes. Using parity conservation 

[63, p. 207-210], which restricts the sum + '  to being even, it is easy to show that 

 

 

 

' '

' '

' ' '
'

1 , ',

1 , '.

S S S

SS

S S

M if S S
M

M if S S

  



  


  



 

  
 

 

 (1.20) 
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Thus, it is possible to reduce the number of independent partial amplitudes from 

64 to 34. Considering that 2 of the 16 spin-mixing partial amplitudes equal to 0, finally 

32 independent M-matrix elements remain.  

The deferential cross section for the elastic scattering in a system of two particles 

with spin-1/2 – spin-3/2, taking into account the spin-orbit interaction, can be written 

as [46, p. 7]: 

 

 
3 5

8 8

QT
dd d

d d d

 
  

  
 (1.21) 

 

The deferential cross section /Td d   corresponds to the triplet state with 

channel spin ' 1S S   and can be constructed as a combination of independent partial 

amplitudes from matrix (1.19). The deferential cross section for the elastic scattering 

in the triplet channel is determined only by five independent partial amplitudes 10
0,T  

11
1,T  10

1,T  11
0,T  and 1 1

1T   given by the 3 3  matrix in the lower right corner of matrix 

(1.19) and can be written as  

 
2 2 2 2 2

10 11 10 11 1 1
0 1 1 0 1

1
2 .

3

Td
T T T T T

d

   
         

 (1.22) 

 

The analytical expressions obtained for the independent partial amplitudes 1
'T 

  

for the scattering triplet state are: 

 

10 1 1
0

0

1
( ) ( 1) exp(2 ) (cos ),

2
cT f i P

ik
     



    
   (1.23) 

 

11 1 1
1

0

1
( ) ( 2) (2 1) ( 1)

4

exp(2 ) (cos ),

cT f
ik

i P

   

 

 



        
 




 (1.24) 

 

110 1 1
1

1

1
exp(2 ) (cos ),

2 2
T i P

ik
    



  
  (1.25) 

 

11 1 1
0

1

1

1 1
( 2) (2 1) ( 1)( 1)

( 1)2 2

exp(2 ) (cos ),

T
ik

i P

  

 

 



        





 (1.26) 
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1 1 1 1
1

2

2

1 1
(2 1) ( 1)

4 ( 1)

exp(2 ) (cos ).

T
ik

i P

  

 

  



      





 (1.27) 

 

The value  1J J
SU



    for each state with full momentum J  is entered here [46, p. 

11]. 

To describe quintet spin states with channel spin ' 2S S  , 13 independent 

amplitudes are required. The differential cross section /Qd d   for the elastic 

scattering for a quintet spin state is described by the expression 

 

2 2 2 2 2 2
20 21 22 20 21 22
0 1 2 1 0 1

22 2 2 2 2 2
2121 2 1 20 22 22 2 2

2 1 2 0 1 22

1
2

3

.

Qd
Q Q Q Q Q Q

d

Q Q Q Q Q Q Q 


  
       


      

 (1.28) 

 

The independent partial amplitudes 20
0Q , 21

1Q , 22
2Q , 20

1Q , 21
0Q , 22

1Q , 21
2Q , 

2 1
1,Q   20

2Q , 22
0Q , 

21
2Q  , 

22
1Q  , 2 2

2Q   correspond to the case where the total spin in the 

incoming and outgoing channels are equal [46, p. 7]. We obtained the analytical 

expressions for 2
'Q 

  independent partial amplitudes: 

 

20 2
0

0

2

1 3( 1)( 2) 2 ( 1)(2 1)
( )

4 2 3 (2 3)(2 1)

3 ( 1)
exp(2 ) (cos ),

2 1

cQ f
ik

i P

  

  







    
   

  

 
  


 (1.29) 

 

21 2 1
1

0

1 2

1 2( 1)( 3) 3(2 1)
( )

4 2 3 (2 3)(2 1)

2 ( 2)
( 1) exp(2 ) (cos ),

2 1

cQ f
ik

i P

   

   

 



 

   
    

  

 
    


 (1.30) 

  

22 2 1
2

0

1 2

1 ( 3)( 4)
( ) 2( 3)

8 2 3

6( 2)(2 1)( 1) ( 2)( 3)
2( 2)

(2 1)(2 3) 2 1

exp(2 ) (cos ),

cQ f
ik

i P

  

  

 

 



 

 
     

     
       





 
(1.31) 
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20 2
1

2

22

6 1
( 2)(2 1) (2 1)

4 (2 3)(2 1)

(2 3)( 1) exp(2 ) (cos ),

Q
ik

i P

 

  







      
 

  



 (1.32) 

 

21 2 1
0

1

11 2

6 3 1 (2 1)(3 ( 1))

4 2 3 1 ( 1)(2 3)(2 1)

1 2
exp(2 ) (cos ),

2 1

Q
ik

i P

  

   

 



 

    
    

    

 
   


 (1.33) 

  

22 2 1
1

1

1 2

1

1 ( 3)( 4) ( 3)( 2)

4 (2 3)( 1) ( 1)

9( 2)(2 1)( 1) ( 3)( 2) ( 2)( 3)

(2 1)(2 3)( 1) ( 1) (2 1)

exp(2 ) (cos ),

Q
ik

i P

 

  

 

 



 

    
   

  

      
   

     





 
(1.34) 

 

21 2 1 1
2

1

12

1 3 3(2 1)

4 2 3 (2 3)(2 1)

2
exp(2 ) (cos ),

2 1

Q
ik

i P

   

  

  





  
     

  

 
  


 (1.35) 

 

2 1 2 1
1

2

1 2

2
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(1.41) 

 

Independent amplitudes (1.29 – 1.41) are listed as the elements of 5×5 diagonal 

matrix in the upper left corner of matrix (1.19) [46, p. 11-13]. 

There are 30 amplitudes 
1
2 '


M  and 

2
1 '


M  for the spin-mixing states for the 

collision of particles with spins 1/2 and 3/2. The number of these amplitudes can be 

reduced to 14 due to parity conservation (1.20) and considering that 2 spin-mixing 

partial amplitudes equal to 0. The analytical expressions for 7 independent 
1
2 '


M  and 

7 independent 
2
1 '


M  partial spin-mixing amplitudes are obtained and the results are 

given in Appendix A, equations (A.1) – (A.14). 

 

1.3 Processes with spin-1/2 – spin-1 

In this case, according to (1.3), channel spin can be S=1/2 and S=3/2. For the 

channel with half-integer spin values 1/2 and 3/2 the M-matrix, just as it is in [61, p. 

370], can be represented as [46, p. 8] 
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(1.42) 

 

In matrix (1.42) we use the Fraktur letter M  for spin-mixing states, while the 

letters D  and Q  denote doublet and quintet spin states. The matrix (1.42) is defined 

by 36 partial amplitudes. However, according to (1.20) the number of partial 

amplitudes of this M-matrix can be reduced from 36 to 18 independent partial 

amplitudes. 

The differential cross section for elastic scattering in a system of two particles 

with spin-1/2 – spin-1, taking into account the spin-orbit interaction, takes the form: 

 

( ) 1 2
.

3 3

QD
dd d

d d d

  
 

  
 (1.43) 

 

The channel spin S can take values 1/2 (doublet) and 3/2 (quartet) [46, p. 8].  

In this case according to Table 1.1 n, p, 3H(1/2+), 3He(1/2+) and 2H(1+), 6Li(1+), 
10Li(1−), 12B(1+) can be considered as colliding particles [43, p. 239, 46, p. 8]. 

The doublet state, which corresponds to the channel spin ' 1/ 2S S  , is described 

by two independent amplitudes 
1/2 1/2

1/2D  and 
1/2 1/2

1/2D 
 of matrix (1.42), which are 

presented by the 2×2 matrix in (1.42). The differential cross section for the elastic 

scattering in the doublet channel is well known and can be written as  

 
2 2

1/2 1/2 1/2 1/2
1/2 1/2

Dd
D D

d


 


 (1.44) 

 

The cross section for the doublet spin channel is defined by two independent 

partial amplitudes. In equation (1.44) the expressions for the independent partial 

amplitudes 
1/2 1/2

1/2D  and 
1/2 1/2

1/2D 
are [62, p. 272-274] 
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The description of the quartet spin channel, ' 3 / 2S S  , is given by 16 partial 

amplitudes. However, as it follows from (1.20), only 8 independent 3/2
'Q 

  amplitudes 

of matrix (1.42) are needed to describe the quartet spin channel. The differential cross 

section for the elastic scattering for a quartet state is defined as [46, p. 25] 
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We obtained the analytical expressions for the independent partial quartet 

amplitudes 
3/2 1/2

1/2Q , 
3/2 3/2
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3/2Q   in equation (1.42). They are: 
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There are 16 partial amplitudes that determine the spin-mixing states. According 

to equation (1.20) this number can be reduced to 8. The analytical expression for the 

spin-mixing independent partial 
1/2
3/2 '


M  and 

3/2
1/2 '


M  amplitudes of the M-matrix for 

the half-integer channel spin 1/ 2S   and 3 / 2S   are obtained and the corresponding 

amplitudes are presented in Appendix A, equations (A.15) – (A.22) [46, p. 9]. 

 

1.4 Processes with spin-1/2 – spin-2 and spin-1 – spin-3/2 

These additional systems are considered in order to confirm the universality of 

the obtained analytical expressions (1.45) – (1.46) for a doublet state with S=1/2 and 

(1.48) – (1.55) for a quartet state with S=3/2 for partial cross sections. 

For the processes with the spin structure 1/2 + 2 the channel spin can take the 

values S=3/2 and S=5/2. For a system with spin-1/2–spin-2 channel spin S can be 1/2, 

3/2 and 5/2.  
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For the channel with the spin value ' 5 / 2S S   of the incoming and outgoing 

channel, the part of M-matrix corresponding to the sextet spin channel is represented 

as 
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(1.56) 

 

In the interaction of particles with spins 1/2 and 2, the channel spin can take the 

values S=3/2 (quartet state, /Qd d  ) and 5 / 2S   (sextet state, /Sd d  ). In this 

case the following particles from Table 1.1, which gives the quartet and sextet channel 

spin, can be involved in the collision process: n, p, 3H(1/2+), 3He(1/2+) and 4H(2−), 
3Li(2+), 4Li(2−) 8B(2+), 14B(2−), 10N(2−), 16N(2−) [43 P. 239, 46, p. 9]. The corresponding 

differential cross section for the elastic scattering is 
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 (1.57) 

 

The partial differential cross section for the channel’s spin 5 / 2S   is represented 

by the following combination of amplitudes of matrix (1.56) [46, p. 9] 
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(1.58) 
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where 
5/2

'S 
  are 18 independent partial amplitudes: 
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calculations for the 18 independent partial amplitudes 
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  are [46, p. 29-32]: 
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For a system with spin-1/2–spin-2 channel spin S and S′ can be 1/2, 3/2 and 5/2. 

In this case, the differential cross section for elastic scattering is determined by the 

expression [46, p. 10] 

 

( ) 1 1 1
.

6 3 2

Q SD
d dd d

d d d d

   
  

   
 (1.77) 

 

The collision of particles n, p, 3H(1/2+), 3He(1/2+) and 4H(2−), 3Li(2+), 4Li(2−) 
8B(2+), 14B(2−), 10N(2−), 16N(2−) from Table 1.1, which leads to the channel spin 1/2, 

3/2 and 5/2, can be considered. The corresponding independent partial amplitudes for 

/Dd d  , /Qd d   and /Sd d   cross sections are given by Equations (1.45) – 

(1.46), (1.48) – (1.55) and (1.58) – (1.76), respectively. The general form of the 12×12 

matrix for the processes with spin-1/2 – spin-2 and spin-1 – spin-3/2 is presented in 

[43, p. 239]. The number of independent matrix elements can be reduced from 144 to 

72. The doublet spin state with the channel spin S = 1/2 is described by only 2 partial 

amplitudes, while for the description of the quartet channel with spin S = 3/2 and the 

sextet spin state with S = 5/2, 8 and 18 independent matrix elements, respectively, are 

required.  

This matrix also contains 8 independent spin-mixing amplitudes for the mixing 

doublet and quartet states. However, in the general case of the 12×12 matrix there are 

also 12 independent spin-mixing amplitudes 
1/2
5/2 '


M  and 

5/2
1/2 '


M  for the mixing 

doublet and sextet states, and 24 independent spin-mixing amplitudes 
3/2
5/2 '


M  and 

5/2
3/2 '


M  for the mixing quartet and sextet states. The spin-mixing amplitudes for the 

latter two cases can be obtained [46, p. 10]. 

To summarize, we can say that to describe the triplet state with the channel spin 

S = 1, 5 independent amplitudes 1
'T 

  required. To describe the quintet (S = 2), the 

number of independent amplitudes 
3/2

'Q 
  increases to 13. The number of independent 

spin-mixing amplitudes 
1
2 '


M  and 

2
1 '


M  in this case is 14.  

For the description of the half-integer doublet (S = 1/2) channel spin state only 2 

independent partial amplitudes 
1/2

'D 
  are required, while for the quartet state with the 

channel spin S = 3/2 the number of independent amplitudes 
3/2

'Q 
  equals 8. There are 

18 independent partial amplitudes 
5/2

'S 
  for the sextet state with the channel spin S 
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= 5/2. In the case of mixing doublet and quartet states 8 independent spin-mixing 

amplitudes 
1/2
3/2 '


M  and 

3/2
1/2 '


M  are required [46, p. 10-11] .  

Obviously, with an increase of the channel spin, the number of required 

independent amplitudes for a correct description of scattering processes increases. For 

low energy processes, whose description requires a small number of partial waves, 

general expressions for the partial amplitudes can be reduced to simple algebraic 

expressions. 

The obtained expressions for the differential cross sections and independent 

partial amplitudes enable phase shift analyses for different integer and half-integer 

channel spins and allow one to find corresponding phase shifts using experimental data 

for a nucleon-nucleus and nuclear-nuclear reaction cross sections.  

The results from Subsections 1.1 – 1.4 were previously presented in the scientific 

publications [42, p. 141-146, 43, p. 232-241, 44, p. 1036-1042, 46, p. 1-33, 49, p. 38, 

51, p. 11, 54, p. 154]. 

The computer program was developed on the basis of the formulas from 

Subsections 1.1 – 1.4. As mentioned earlier, when experimental differential cross 

sections are known, one can usually find a set of parameters, so-called nuclear phase 

shifts. The set of nuclear phase shifts can reproduce properly the form of the 

experimental cross section. In this case, the quality of the description of the 

experimental data can be estimated by the 
2  method. Obtaining the set of nuclear 

phase shifts is the multiparameter variation problem. Methods and frameworks that can 

be used for this problem solving are described in detail in the book [57, P.91-275].  

It shows good results for simple cases, for example, for the 1/2 + 1 system (p-2H 

system was used for a test program). However, when moving to a higher channel spin, 

significant deviations from the expected results are observed. Obviously, further 

clarification for the developed software is required. The text of the computer program 

is given in Appendix B. 

In case of insufficient amount of experimental data on total cross sections 

alternative indirect methods for obtaining phase shifts and constructing interaction 

potentials can be used.  

As mentioned above, relying on the experimental data of elastic scattering, such 

as the observed energy spectra and ACs for the bound states, as well as measured 

geometric characteristics such as charge and mass radii, one able to reconstruct the 

interaction potentials in a fixed binary cluster channel. This approach is known today 

as the potential cluster model (PCM). Section 2 discusses this method with allowance 

for forbidden states in more detail (so-called MPCM). Sections 3 and 4 show the 

specific results of using this method for solving astrophysical problems on the example 

of radiative capture reactions 3 2 5He( H, ) Li  and  
1110 Be , Ben  . 

 

1.5 Relationship of parameters in the laboratory and center of mass systems 

To make the processing and calculations of the differential cross sections and 

corresponding scattering amplitudes independent on the choice of experimental 

performance we are presenting here the brand new convenient relationship for the 
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kinematic characteristics of the scattering processes, analogues of which we have not 

found in any other sources. 

In studying various scattering phenomena of two particles two coordinate systems 

are usually used. The first system is the laboratory system (l.s.), in which one of the 

particles, called the target, is at rest before scattering, and the second one moves relative 

to it (this particle is called the incident particle or projectile). The second reference 

system is the center-of-mass (or inertia) system (c.m.), in which the common center of 

inertia of both colliding particles rests. In the center of inertia system, both particles 

move before the scattering towards each other and moves apart in opposite directions 

after the scattering. In experiments, all quantities are measured in a laboratory system, 

while a theoretical study of scattering processes is more convenient to carry out in a 

center of inertia system [64, p. 193-197]. 

Obtain the formulas that allow us to transfer the values obtained during the 

experiment from the laboratory system to the center-of-mass system. The following 

notations are introduced: 1 0,m   is mass and velocity of the first particle (incident 

particle), 2m  is a mass of the target at rest in the laboratory system, 
1 2,   are the 

velocities of both particles before the collision in the cms, and 
1 2' , '   are the velocities 

of the particles after scattering in the center of mass system. Figure 1.1 shows the 

scattering process of two particles in different systems. 

We denote the angle of departure of the particle after scattering in the laboratory 

system as 
LS . The angle of momentum of the relative motion of particles in the center 

of mass system is denoted by 
CM . 

The relationship between the angles LS  and CM  may be expressed by the 

following relation: 

 
2

2 21 2

2 1

cos cos sin sin ,CM LS LS LS

m m

m m

 
 

        
  
 

 (1.47) 

 

or 

 
2

2 21 1

2 2

cos cos 1 sin sin .CM LS LS LS

m m

m m

 
       

 
 (1.48) 
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Scattering of two particles m1 and m2 in a laboratory system (left) and in the center-of-

mass system (right) 

 

Figure 1.1 – Scattering of two particles 

 

We introduce the notation 1 2/m m   and as a result, we obtain the relation:  

 
2 2 2cos cos 1 sin sin .CM LS LS LS         (1.49) 

 

Expression (1.49) gives the relation between the parameters in the laboratory 

system and the center-of-mass system.  

This relation is used in Sections 3 and 4 in the processing of experimental data. 
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 2 MPCM FRAMEWORK FOR THE DESCRIPTION OF CLUSTER-

CLUSTER SYSTEMS RELEVANT FOR ASTROPHYSICAL APPLICATIONS 

Analytical estimates of the reduction of the exact method of phase shifts analysis 

in the framework of the modified potential cluster model are presented in this Section, 

e.g. the problem of reconstructing the interaction potentials from the experimental 

observables is considered. 

The principles for constructing the potentials of discrete and continuous spectra 

within the framework of MPCM, developed and substantiated in monographs and 

original works [8, p. 5-46 22, p. 40-94, 57, p. 10-69, 65, 66], are presented below. 

Further in Sections 3 and 4, the results of calculations of the total cross sections 

and reaction rates based on the obtained interaction potentials for 3 2 5He( H, ) Li  and 
10 11Be( , ) Ben   processes are presented.  

 

2.1 Model and methods 

For calculating the astrophysical S-factors (for charged projectiles) and reaction 

rates, it is necessary at first to calculate the total cross sections.  

Further, the necessary formulas and formalism elements for calculations of the 

radiative capture reactions characteristics are provided. 

In this Subsection the basic methods of the radiative capture total cross-sections 

calculations, cluster states classification according to Young diagrams, and principles 

of intercluster interaction potential constructing in the used MPCM are considered in 

general.  

 

2.1.1 Elements of formalism for radiative capture reactions 

Consider the basic formulas for the calculation of the total cross sections for the 

electric ЕJ and magnetic МJ transitions.  

The total cross-sections of radiative capture σ(NJ,Jf) for the ЕJ and МJ transitions 

in the PCM are presented, for example, in [22, p. 59, 23, p. 29] and [67] and have the 

form 

 

i i

2
2

f J2 3 2

1 2

2 2

J f i J f i

L ,J

8 1
( , ) ( , )

(2 1)(2 1) [(2 1)!!]

( , , ) ( , ),

c

Ke J
NJ J A NJ K

q S S J J

P NJ J J I J J

 



 

  

 
  (2.1) 

 

where σ corresponds the radiative capture total cross-section, μ designates the reduced 

mass of initial channel particles in atomic mass unites, q is the wave number of initial 

channel particles, S1 and S2 denote the initial channel particles spins, K and J are the 

wave number and an angular moment of γ-quantum in the final channel respectively, 

and N corresponds to E or M transitions of J multipolarity from Ji initial to Jf final 

nucleus state [48, p. 93-94]. 

For ЕJ(L) electric orbital transitions (Si = Sf = S) quantity РJ has the form [23, p. 

29-30] 
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 (2.2) 

 

Here Si, Sf, Lf, Li, Jf, Ji denote the total spins and the moments of initial (i) and 

final (f) channels particles, m1, m2, Z1, Z2 correspond the masses (in amu) and charges 

(in “e” units) of the initial channel particles, IJ is the integral of the wave functions of 

i initial and f final state, as functions of relative motion of clusters with the 

intercluster distance r [48, p. 94]. 

For the spin part of М1(S) magnetic process at J = 1 in the model used the 

following expression was obtained (Si = Sf = S, Li = Lf = L) [22, p. 59-61, 23, p. 30-32]: 
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 (2.3) 

 

Here m is the nucleus mass in amu, μ1, μ2 are the clusters magnetic moments, and the 

remaining notation is the same as in the previous expression. The constant  is 

equal to 41.4686 MeVfm2 [48, p. 94]. 

 

2.1.2 Principles for construction of interaction potentials 

Earlier in the framework of the modified potential cluster model with the 

forbidden states the possibility of describing the astrophysical S-factors of radiative 

capture reactions on many light and the lightest atomic nuclei was shown.  Such model 

takes into account the supermultiplet symmetry of the clusters system wave function 

(WF) with separation of orbital states according to Young diagrams [48, p. 94].  

The used orbital state classification enables to analyze the intercluster interactions 

structure, to determine the presence and quantity of the allowed states (ASs) and 

forbidden states (FSs) in the intercluster wave functions, and therefore gives an 

opportunity to find number of nodes of the cluster relative motion WF. For any cluster 

system the task many-particle character and antisymmetrization effects are 

qualitatively taken into account by separation of one-particle bound levels of such 

potential into the states which are allowed or forbidden by the Pauli exclusion principle 

[68]. 

In the approach used the intercluster interaction potentials for scattering processes 

are constructed on the basis of the elastic scattering phase shifts description taking into 

2

0/ m
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account their resonance behavior. These phase shifts come from the experimental data 

for differential cross-sections by applying the phase shift analysis [48, p. 94-95].  

For the bound states (BSs) of light nuclei in the cluster channels the potentials are 

constructed not only on the basis of the scattering phase shifts description but also by 

using the certain additional requirements. For example, one of these requirements is 

the reproduction of binding energy and some other basic characteristics of the nuclei 

bound states, and in some cases this requirement is essential. In addition, it is assumed 

that a nucleus ground bound state is relevant to the cluster channel which consists of 

initial particles participating in the capture reaction [48, p. 95, 69, 70]. 

The choice of the modified potential cluster model for the description of such 

cluster systems in nuclei, nuclear and thermonuclear processes at astrophysical 

energies [71] is caused by that the possibility of forming the nucleon associations, i.e. 

clusters, in many light atomic nuclei, and the degree of their isolation from each other 

are comparatively high. It is confirmed by many experimental measurements and 

different theoretical calculations obtained by different authors during the last 50-60 

years [72]. Such assumption, of course, is a certain idealization of situation really 

existing in the nucleus, because it assumes that there is 100% clusterization of the 

nucleus in the bound state (BS) for the initial channel particles [48, p. 95]. 

If one cluster channel is dominated in the nucleus structure, then the used one-

channel cluster model allows us to identify this dominant cluster channel and describe 

the nuclear system properties caused by him [73]. 

Now let us consider in detail the procedure of construction of the partial 

intercluster potentials at the given orbital moment L and other quantum numbers by 

defining the criteria and sequence of finding parameters, and specifying their possible 

varieties and possible ambiguities [48, p. 95]. First the parameters of the ground states 

(GS) potentials are found. These parameters at the given number of the allowed and 

forbidden in the certain partial wave bound states are fixed quite uniquely by the 

binding energy, nucleus radius and an asymptotic constant in the considered channel. 

The accuracy of the BS potential parameters calculation in such a way, is 

connected with the asymptotic constants (AC) accuracy which is equal to 10÷20%. 

Other ambiguities are absent in this potential because the classification of states 

according to Young diagrams allows to fix uniquely the number of the BSs which are 

forbidden or allowed in the given partial wave. This number determines completely the 

depth of the potential, while the potential width depends completely on the AC value 

[48, p. 95]. The principles for the FSs and ASs number determination in the given 

partial wave are presented below. 

It should be noted here the charge radius calculations in any model contain the 

model varieties, i.e. the varieties caused by the model accuracy. In any model such 

radius values depend on the integral of the model WF, i.e. the model varieties of such 

functions are simply summarized. At the same time the AC values are determined by 

the model WFs in one point of their asymptotics and seemingly contain the appreciably 

small variety. Therefore, hereinafter the BSs potentials are constructed so that to be 

agreed with the AC values obtained by independent methods which allow determining 

the AC from the experimental data [74]. 
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The intercluster potential of the nonresonance capture process is also constructed 

quite uniquely by using the scattering phase shifts at the given number of the BSs 

allowed and forbidden states in the considered partial wave. This potential parameters 

determination accuracy is connected mainly with the accuracy of determination of 

scattering phase shifts from the experimental data and may reach 20÷30%. As in the 

previous case such potential does not have any ambiguities because the states 

classification according to Young diagrams allows us to fix uniquely the BSs number 

which determines completely its depth. This potential width at the given depth is 

determined completely by a form of the elastic scattering phase shift [48, p. 95]. 

Upon construction of the nonresonance scattering potential by using the data for 

nuclei spectra in the definite channel, it is difficult to evaluate its parameters calculation 

accuracy even at the given number of the BSs, though one may seemingly hope this 

accuracy does not exceed the variety in the previous case. As it usually assumed for 

the energy region up to 1 MeV the same potential must lead to near-zero value of the 

scattering phase shift, or to the smoothly dropping form of the phase shift, if there are 

not any resonance levels in the nucleus spectra. 

In the case of the resonance scattering analysis the potential is constructed 

uniquely, because at the given BSs number and energies up to 1 MeV there is a 

comparatively narrow resonance in the considered partial wave, the width of that is of 

the order of 10÷50 keV. At the given BSs number, the potential depth is fixed uniquely 

by the resonance level energy, and its width is determined completely by this resonance 

width. Its parameters variety as a rule does not exceed the variety of this resonance 

width determination and is equal to about 3 ÷ 5% [48, p. 95]. Moreover, it is also 

concerned to construction of the partial potential by using the scattering phase shifts, 

and its parameters determination on the basis of the resonance in the nucleus spectra. 

As a result, all the potentials do not have any ambiguities that are common to the 

optical model, and, as one can see later, they allow us to describe correctly the radiative 

capture total cross-sections. The BSs potentials must describe correctly the known 

values of the AC which is connected with an asymptotic normalizing coefficient (ANC) 

determined from the experiment and denoted as ANC, by the following expression [74, 

p. 3419-3424, 75] 

 
2 2 ,NC fA S C    (2.4) 

 

where Sf is the spectroscopic factor, and C is the dimensional asymptotic constant 

expressed in fm-1/2 

 

   ηL 1/2 02 ,L r CW k r     (2.5) 

 

which is connected with the non-dimensional AC Cw [76] used by us 

 

   0 ηL 1/2 02 2 ,L wr k C W k r     (2.6) 

 

in the following way: 
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02 wC k C   (2.7) 

 

In conclusion, it should be stressed that upon construction of the partial interaction 

potentials it is assumed they depend not only on the orbital moment L, but also on the 

total spin S, and the total moment J of the clusters system. In other words, for the 

different moments JLS we have different parameters’ values. Since the E1 and M1 

transitions between the different (2S+1)LJ states in the continuous and discrete spectra are 

usually considered, so the potentials of these states will be different [48, p. 95]. 

In addition, one of the modifications of the model used here is an assumption that 

the intercluster potentials dependent explicitly on the Young diagrams {f}. In other 

words, if two diagrams are allowed in the states of continuous spectrum and only one 

is allowed in the discrete spectrum, so such potentials can have different parameters at 

the same JLS, i.e. in the same partial wave. 

 

2.2 Radiative 3He(2H, γ)5Li capture  

Let us now examine in more detail the various aspects of the 3He(2H, γ)5Li 

reaction, including the experimental data presented in the data base of EXFOR [77] 

and the original papers cited therein. 

Parametrization of the experimental data for 2H capture in 3He [30, p. 52-58] for 

the S-factor at energies from 0.2 to 1.0 MeV according to Breit-Wigner and its further 

extrapolation to zero energy leads to a value of 0.24 keVb [47, p. 48].  

Let us give for comparison several known values of the S-factors at zero energy 

for some radiative capture reactions. For example, the latest data for the astrophysical 

factor of the proton capture on 2H give the value S(0) = 0.216(11)∙10-3 keVb [78], 

while in the scientific paper [79] is reported S(0) = 0.166(14)∙10-3 keVb. At the same 

time, for the proton capture on 3H, S(0) = 2.0(2)10-3 keVb [80], i.e. an order of 

magnitude greater. Measurements in the research [81] lead to S(0) =1.3(3) keVb and 

S(0) =6.0(1.2)10-6 keVb for 3H(2H, γ)5He and 2H(2H, γ)4He capture, respectively. The 

S-factor for 2H(2H, γ)4He capture is smaller due to the strong E1 transition in this 

process, which is forbidden due to equal masses of the particles in the initial channel 

[26, p. 112021]. 

In [81, p. 181-183], 0.36(9) keVb is given for the astrophysical factor of the 
3He(2H, γ)5Li capture. At the same time, more recent results [34, p. R64] for the 
3He(2H, γ)5Li capture, the S-factor is S(0) = 0.26(7) keVb, which is in a good 

agreement with the value of 0.24 keVb, which we report below. Although the error 

bands of these data [34, p. R64] and [81, p. 181-183] overlap, in fact, the values of the 

astrophysical factor of this reaction can be in the range 0.19–0.45 keVb [47, p. 48]. 

This is a very large uncertainty for its values, which leads, despite the relatively low 

abundance of 3He, to the rather large uncertainty of the contribution of the reaction 

under consideration to the primordial nucleosynthesis in the Universe and the processes 

of initial star formation. 

Therefore, a more detailed study of this process will allow to obtain the results for 

the reaction rate and to compare it with the rates of other reactions of thermonuclear 
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fusion, given, for example, by [35, p. 283-294]. This work contains analytical 

parameterizations of rates for dozens of thermonuclear reactions, but there are no data 

for 3He(2H, γ)5Li capture. Perhaps this is due to the fact that the rate of the reaction 

under study was considered to be negligible. However, below we show that the rate of 

this reaction at certain temperatures is larger than the rate of proton capture on 2H and 

is comparable with the rate of proton capture on 3H. Thus, the 3He(2H, γ)5Li reaction 

rate among the rates of the processes of radiative capture in the considered temperature 

range of 0.01–10.0 T9 is actually of the similar magnitude to the other processes which 

are considered as an important [47, p. 48]. 

 

2.2.1 Nuclear physics aspects and modern experimental results of the 3He(2H,γ)5Li 

capture reaction 

Let us present a survey of experimental measurements of the total cross sections 

of the 3He(2H,γ)5Li capture as well as our estimation of the total cross section obtained 

from the measurements of differential cross sections and the polarization 

characteristics. From the point of view of nuclear physics, practically all experimental 

studies of the total cross sections of 3He(2H, γ)5Li reaction for capturing to the ground 

state of 5Li from the 1960s to the present are limited to two works published in late 

1960s and early 1970s: [30, p. 52-58] and [31, p. 234-243]. Only in these works the 

total cross sections of the radiative 3He(2H, γ)5Li capture at the astrophysical energy 

range are shown in an explicit form. 

In paper [30, p. 47-64] measurements were made at a deuteron energy of 200–

1360 keV in the laboratory system (l.s.). For the 3He(2H,γ)5Li reaction separation of 

the transitions into the GS and the first excited state (FES) of 5Li (see Figure 2.1) have 

been studied. However, as a result of the poor quality of the experimental data for the 

transition to the FES of 5Li, the integral cross sections are presented only for the 

transition to the ground state with a value of 21(4) μb for σγ0,cm at ER = Ecm = 0.27 MeV 

[30].  

The angular distributions measured in [30, p. 58] at Ecm = 0.288 and 0.615 MeV 

for the transition to the ground state of 5Li was consistent with isotropy to within 10%. 

The total cross-sections obtained in [30, p. 56-58] with an accuracy of 20% are shown 

below in Figure 2.2 [47, p. 49].  

In research [31, p. 234-243] the total cross sections were measured at excitation 

energy Ex from 17.4 to 21.1 MeV. If we use the binding energy for the 2H3He channel 

of 16.66 MeV [82, p. 27-29], we obtain capture energy of 0.74–4.44 MeV in the c.m. 

In paper [31, p. 235] the value of the binding energy of 16.4 MeV was used, which is 

close to 16.39 MeV given in [83, p. 18-19]. Using energy of 16.4 MeV, we obtain 

capture energy of 1.0–4.7 MeV in the c.m. These values will be used throughout the 

thesis. 

The capture total cross sections obtained in work [31, p. 238-239] have a wide 

maximum (the width of 3–4 MeV) with the value of 59(3.0) b at the energy Ex = 19.7 

MeV, i.e. at 3.3 MeV in the c.m. This maximum points at the existing group of broad 

levels in this energy range. This group of levels at energies 19.28–22.06 MeV is clearly 

visible in the spectra of 5Li [82, p. 27-29], shown in Figure 2.1 [47, p. 49].  
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Data is provided with a binding energy of 5Li in the 3He2H channel of 16.39 MeV and 

a binding energy of 5He in the 3H2H channel of 16.70 MeV [83]. 

 

Figure 2.1 – Experimental energy levels for 5Li and 5He from [82, p. 30-31] 

 

The total cross sections for capture into the GS obtained in [31, p. 238-239] are 

shown in Figure 2.2. The angular distributions at angles θγ,lab = 0º–130º obtained in 

research [82, p. 30-31] for the transition to the GS of 5Li were close to isotropic up to 

the energy of 4 MeV in c.m. The statistical error of the data obtained in [31, p. 234-

243] was 5%, but due to the high uncertainty of the procedure of separating the peaks 

from the transitions to the ground and first excited states of 5Li the error in the 

determination of the absolute values of the cross sections can reach up to 40% [47, p. 

50]. 

Once again we note that the most complete databases of nuclear data such as 

EXFOR [77], as well as well-known atomic characteristics databases, for example, 

PHYSICS, CDFE, NASA DATA [85, 86], contain only these data for total cross 

sections of 3He(2H,γ)5Li capture at low energies. Besides them, however, there are 

several publications [27, p. 1023-1029, 28, p. 593-602, 29, p. 1585-1587, 32, p. 429-

431, 33, p. 921-922, 84, p. 345] in which measurements of the number of events 

observed in experiments with a polarized beam and differential capture cross sections 

are realized. Therefore, we perform a recalculation of some of the experimental 
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measurements of these studies with the extraction of the total cross sections from them 

[47, p. 50].  

 

 
 

Experimental data: □ and ■ are from [30, p. 56-58] for 0 ,   are from [31, p. 238-

239]. The other data are recounted by us: ○ and  are from [27, p. 1023-1029] for 0+1, 

 and ▲ – from [28, p. 593-602] for 0, ▼ – from [29, p. 1585-1587] for 0+1, for 0, 

◄ – from [84, p. 345] for 0, ♦ for 0 , ◊ for 1 – from [88, 89], ► – from [32, p. 429-

431, 33, p. 921-922] for 0, and the solid curve is from [34, p. R63] for 0. 

 

Figure 2.2 – The total cross sections of the 3He(2H,γ)5Li capture 

 

Let us now explore in more detail on the experimental aspects of above mentioned 

studies and make a comparison of the total cross sections obtained with their help. 

Probably, for the first time, the yields of the 3He(2H,γ)5Li reaction at low energies 

were measured by Blair et al. [27, p. 1023-1029] back in 1954. It was assumed that the 

reaction proceeds with capture to the ground and first excited states of the nucleus. 

However, due to the insufficient energy resolution, the peaks from these transitions 

could not be separated and as a result the total yield from all possible transitions was 

presented [47, p. 50].  

The excitation function obtained for θγ,lab = 90º and Ecm = 0.1–1.5 MeV showed a 

wide resonance at Ecm = 0.27 MeV with a total cross section in the peak equal to 50(10) 

μb. Also authors of [27, p. 1023-1029], measured the angular distribution of the total 

yield of the reaction at Ecm = 0.35 MeV, which turned out to be isotropic with an 

accuracy of 10%. To obtain the integral cross sections from the data of [27, p. 1023-

1029] the yield of this reaction, shown in Figure 4 in this work was normalized to the 

total cross section measured at ER = Ecm = 0.27 MeV. In Figure 2.2 are presented the 
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integral cross sections, which we recalculated from the yield of the 3He(2H,γ)5Li 

reaction given in [27, p. 1023-1029]. 

Subsequently, in [28, p. 593-602], the differential cross sections of the 
3He(2H,γ)5Li reaction for θγ,lab = 90º were measured in the energy range Ecm = 0.08–

2.76 MeV. Authors of Ref. [28, p. 593-602] could not find any indications of the 

presence of a peak from the transition to the first excited state of 5Li in the spectra of 

the 3He(2H,γ)5Li reaction, and the single broad peak in the spectra was interpreted as 

the peak from the transition to the ground state of 5Li [47, p. 50-51]. However, it is 

possible that this broad peak contained also the transition to the first excited state of 
5Li but the accuracy of the experiment did not allow one to distinguish it [47, p. 50].  

The measurement of the angular distributions at Ecm = 0.3 and 1.66 MeV with 7% 

error reported in scientific paper [28, p. 593-602] also turned out to be isotropic. The 

integral cross section obtained in [28, p. 593-602] for 3He(2H,γ)5Li at the resonance 

energy ER = Ecm = 0.27 MeV is 38(4) μb. 

Furthermore, in work [29, p. 1585-1587] the sum of the differential cross 

sections of the reaction 2H(3He,γ)5Li for the transitions to the ground and first 

excited states of 5Li at θγ,lab. = 90º in the energy range of Ecm = 0.93–4.5 MeV were 

measured. The obtained excitation function, accurate to within 10% of the 

measurement demonstrates a smooth growth with increasing energy without a clear 

indication of the presence of any resonances of the reaction 2H(3He,γ)5Li in the 

considered energy range.  

When we obtained the integral cross sections from the data of [28, P.593-602, 

29, p. 1585-1587], the differential cross sections shown in Figure 5 of [28, p. 593-

602] and Figure 2 of [29, p. 1587] were simply multiplied by 4π (here we assume 

the isotropy in the angular distributions that was shown in all works listed above) 

and these results are shown in Figure 2.2 [47, p. 51].  

It can be seen from Figure 2.2 that the data of [28, p. 593-602] differ quite 

strongly from the measurements of [30, p. 56-58], although in both cases it is said 

that capture is only to the GS of 5Li. In addition, the results of [29, p. 1585-1587] 

for capture to the GS and FES lie below the cross sections of research [31, p. 238-

239] obtained for the capture to the GS [47, p. 51]. 

Somewhat later in work [84, p. 344-345] the excitation functions of the reaction 
2H(3He, γ)5Li at θγ,lab = 90º and Ecm = 0.76–10.1 MeV for transitions to the ground and 

first excited states of 5Li were obtained. Moreover, in scientific paper [84, p. 344-345] 

the sum of the differential cross sections for the transitions to the ground and first 

excited states of 5Li at θγ,lab. = 90º is given. For five energies, the angular distributions 

for these transitions were measured.  

Work [84, p. 346] presented a table with the ratios of the coefficients of the 

Legendre functions of A2/A0 and A1/A0 for the cases when the first two and first 

three terms of the expansion in describing these angular distributions are taking into 

account [47, p. 51].  

The error in determining the absolute values of the cross sections without 

taking into account the error in the procedure of separating of the peaks from the 

two transitions was 17%.  
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A change of the angular distributions with the energy and the form of the 

excitation functions of the 2H(3He,γ)5Li reaction allowed the authors of work [84, p. 

346-349] to make a conclusion about the existence of a broad resonance structure 

with the width of 3–4 MeV in the range of Ecm = 0.76–10.1 MeV and the maximum 

σγ0 = 51(8) μb located at Ecm ≈ 4.3 MeV. Using data [84, p. 344-345], we obtained 

the values of the integral cross section for Ecm = 0.764, 1.282, 1.712, 3.112, 4.312, 

6.812, 9.312 MeV only for capture to the ground state of 5Li, since the data of [84, p. 

346-349] for the first excited state of 5Li are unreadable due to the error of the order of 

100% [47, P.51].  

We obtain the cross section for the energy Ecm = 0.764, 1.282, and 1.712 MeV, 

by simply multiplying the differential cross sections [84, p. 345], taken from 

Figure 8 of this work by 4π, since at these energies the angular distributions are 

isotropic. We obtain the integral cross sections at Ecm = 3.112, 4.312, 6.812, 9.312 

MeV, using data presented in Figure 8 and Table 1 from scientific paper [84, p. 345-

346].  

As a first step we find the coefficients A0, and then these coefficients are 

multiplied by 4π. The calculated integral cross sections for the two cases from Table 

1 of [84, p. 346] agree within their respective margins of error. These results are 

shown in Figure 2.2, which lie somewhat lower than the data given in [31, p. 238-

239] for capture to the GS, but higher than the results reported in [29, p. 1585-1587], 

where the sum of the cross sections for transitions to the GS and FES of 5Li were 

measured [47, P.51]. 

Using the polarized deuteron beam with Ecm = 0.48 MeV, a thick target of 3He, 

which completely absorbed the beam energy, the angular distribution of the products of 

the reaction of deuteron capture by the 3He to the ground state of 5Li was measured [33, 

p. 921-922]. The obtained angular distribution of γ quanta was isotropic within the error 

of 10% [47, p. 52].  

In a similar work [32, p. 429-431] data for a polarized deuteron beam with Elab = 

0.6 MeV and a 3He target in which the deuterons lost 0.3 MeV were presented. Within 

the experimental error, the differential cross sections reported in researches [32, p. 429-

431] and [33, p. 921-922] coincide. The total cross section, obtained from these 

differential cross sections is 23 μb and depicted in Figure 2.2 in position of the first 

resonance of the reaction, i.e. at ER = Ecm = 0.27 MeV [47, p. 52]. 

To conclude this review, we note that the aforementioned difference in the energy 

of the channel reported by [82, p. 27-29] and [83, p. 16-18] force us to recalculate this 

energy. We used data for the masses of 2H and 3He 1875.613 MeV and 2808.392 MeV, 

respectively, from [85], and the mass of 5Li (4667.617 MeV) was taken from the 

database of [86]. Then, for the binding energy of the 3He2H channel of 5Li, a value of 

16.388 MeV is obtained, which, within precision of rounding errors, coincides with 

16.39 MeV given in [83, p. 16].  

As we have already mentioned, a value of 16.66 MeV presented in [82, p. 27-29] 

differs significantly from the results and the data of the survey of [83, p. 16-18]. For 
5He in the 3H2H channel with m(3H) = 2808.921 MeV [85] and m(5He) = 4667.838 

MeV [86], we have obtained Ebin. = 16.696 MeV, which is in good agreement with 

16.70 MeV reported in [83, p. 16-18]. At the same time, the value of 16.792 MeV 
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given by Tilley et al. (2002) [82, p. 27-29] also differs noticeably from our results and 

the data of [83, p. 16-18]. 

 

2.2.2 Application of 2H(3He,γ)5Li reaction to plasma problems 

Now let us consider other experimental studies related to the plasma of synthesis 

reactors performed in references [81, p. 181-183, 87, 88, p. 691-692], which are 

applicable when considering the plasma of synthesis reactors. Work [81, p. 181-183] 

presented an astrophysical S-factor at zero energy and the total cross section of the 
2H(3He,γ)5Li reaction for the capture to the GS at 40 keV in c.m. [47, p. 52].  

In [87, p. 412-413], the reaction rate of the 2H(3He,γ)5Li capture to the GS is given 

and we use the latter rate further to compare with our results. The results for the total 

cross sections and the astrophysical S-factor for the capture to the GS at the energy 

range 13–120 keV in c.m. are given and the reaction rate at temperatures up to 1.0 T9 

is presented in [34, p. R63]. These results are also obtained for their application and 

use in the study of thermonuclear processes in the plasma of artificial thermonuclear 

fusion reactors. In Figure 2.2 the corresponding integral cross sections from scientific 

paper [34 P. R63-R64] for nuclei not screened by the electron shells of atoms are 

depicted by the solid curve [47, P.52].  

All these results are based on the experimental work of [88, p. 691-692], in which 

the 3He(2H,γ)5Li reaction was studied at Ecm = 0.025–0.06 MeV. In [88, p. 691-692] the 

branching ratios for the 3He(2H,γ0)
5Li/3He(2H,р)4He at five energies within the 

aforementioned range and for the 3He(2H,γ1)
5Li/ 3He(2H,р)4He at Ecm ≈ 0.06 MeV were 

measured within the errors range 12% to 40%.  

It is shown in [88, p. 691-692], that the ratio of the branching of 3He(2H,γ0)
5Li/ 

3He(2H,р)4He in the range of Ecm = 0.025–0.06 MeV is practically constant and equal to 

(4.5±1.2)·10-5, and for the case of 3He(2H,γ1)
5Li/ 3He(2H,р)4He at Ecm ≈ 0.06 MeV the 

value of (8 ± 3)·10-5 is obtained. Moreover, the authors of [88, p. 691-692] carried out a 

simple extrapolation of the branching ratio for the 3He(2H,γ0)
5Li/ 3He(2H,р)4He to the point 

of 0 keV and the value of (8 ± 2)·10-5 was obtained [47, p. 52].  

However, it is possible that the increased value of the branching ratio for the 

transition to the ground state obtained at the lowest energy in work [88, p. 691-692] can 

be explained by the large error of about 40%, and that in fact the ratio of the branching for 

the 3He(2H,γ0)
5Li/3He(2H,р)4He is constant up to 0 keV and equal to (4.5 ± 1.2)·10-5. 

To obtain the integral cross sections of the reaction 3He(2H,γ0,1)
5Li in the region 

Ecm = 0.025–0.06 MeV, presented in Figure 2.2, we use data from research [88, p. 691-

692] and [89, p. 797] given in Figure 4 and Table 1 respectively. Work [89, p. 797-

798] presented the astrophysical S-factor of the 3He(2H,р)4He reaction for Ecm = 0.008–

0.06 MeV with an error of about 3% [47, p. 52]. First, from the S-factors given in [89, 

p. 797-798] we obtain the integral cross sections for the energies considered in [88, 

691-692], and then these cross sections we multiply by the values of the branching 

ratios for the 3He(2H,γ0,1)
5Li/ 3He(2H,р)4He from [88, p. 691-692]. 

 Moreover, it can be seen from Figure 4 in scientific paper [89, p. 797-798] that 

in the range of Ecm = 0.025–0.06 MeV, the S-factors of the 3He(2H,р)4He reaction for 

screened by the electron shells of the target atoms nuclei differ from S-factors for bare 

nuclei by no more than 5%. Therefore, in constructing the experimental bare integrated 
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cross sections for the 3He(2H,γ0,1)
5Li reactions with an accuracy of 13–41%, we do not 

take into account the screening effects [47, p. 53]. 

There are theoretical studies [90-93], which provide based on various approaches 

descriptions of either the differential cross sections and the polarization characteristics, 

or the spectral levels and their widths. Modern “ab initio” microscopic calculations for 

systems with A = 5, as well as the reactions 3H(2H,n)4He and 3He(2H,p)4H in the context 

of applications to thermonuclear processes in the Big Bang and laboratory fusion are 

presented in scientific paper [94]. However, the processes of radiation capture, for 

example, 3He(2H,γ)5Li the authors of did not consider.  

Theoretical calculations that would include the main static and dynamic 

characteristics of the reaction 3He(2H,γ)5Li and the final nucleus 5Li could not be found, 

at least in the sources available to us. As a result one can conclude that consideration 

of all the experimental and theoretical works presented above, the capture reaction 
3He(2H,γ)5Li does not seem to be sufficiently studied both in the experimental and 

theoretical senses [47, p. 53]. 

The single-channel MPCM with forbidden states and the classification of cluster 

states according to Young diagrams are applied to study the radiative 3He(2H,γ)5Li 

capture. This model is much simpler than the known Resonating Group Method (RGM) 

[95] and its modifications [96, 97], but in many cases it allows one to obtain quite 

reliable numerical results for many reactions such as radiative capture.  

 

2.2.3 Scattering phase shifts, interaction potentials for elastic 2H3Нe scattering, 

and potentials for 2H3Нe bound states 

We present the classification by orbital symmetries of the 2Н3He and 2Н3H 

systems, i.e. a configuration of 2+3 nucleons. The doublet channel spin (S = 1/2) 

scattering states depend on the two allowed orbital Young diagrams {41} and {32}, 

and these are regarded as mixed in terms of the orbital symmetries. The quartet channel 

spin (S = 3/2) allows only one symmetry {32}, so these states are pure according to the 

Young diagrams. Therefore, it is assumed that states with a minimal spin in some 

lightest cluster systems scattering processes, including those considered here, can turn 

out to be mixed in Young orbital diagrams, as was shown in [98]. 

The classification of states according to Young diagrams for these systems is 

given in Table 2.1 and was obtained in [98, p. 1513-1514, 99] on the basis of general 

tables of Young diagrams products from [100]. In Table 2.1 T, S and L are isospin, 

spin and the orbital angular momentum of the particle system, {f}S, {f}T, {f}ST and 

{f}L are spin, isospin, spin-isospin, and possible orbital Young diagrams, respectively 

and {f}AS, {f}FS are Young diagrams of allowed and forbidden orbital states [47, p. 

55]. 

 Table 2.1 shows the forbidden state with the Young diagram {5} for the S-

waves of doublet and quartet channels, while in the P-wave the forbidden state with 

the Young diagram {41} is present only for the quartet channel, in the doublet 

channel this state is allowed [47, p. 55]. 

At the same time, the states of clusters in the discrete spectrum, for example, 

the ground states of 5He and 5Li nuclei are assumed to be pure with the Young 

diagram {41} [98, p. 1513-1514]. Furthermore, it is assumed that since the scattering 
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states and the discrete spectrum depend on different Young diagrams, it is possible 

to juxtapose them different interaction potentials. In other words, explicit 

dependence of the potentials on the orbital symmetries {f} is allowed, and not only 

on the quantum numbers JLS – total angular momentum, orbital angular momentum 

and spin of the nuclear particles system [98, p. 1513-1514].  

 

Table 2.1 – Classifications of ASs and FSs in cluster systems with A = 5.  

 

System T S {f}S {f}T {f}ST {f}L L {f}AS {f}FS 

2H3Не 

 
2H3Н 

1/2 

1/2 {32} {32} 
{5}+{41}+{32}+ 

{311}+{221}+{2111} 

{5} 

{41} 

{32} 

0 

1 

0,2 

 –  

{41} 

{32} 

{5} 

 –  

 –  

3/2 {41} {32} 
{41}+{32}+{311} 

+{221} 

{5} 

{41} 

{32} 

0 

1 

0,2 

 –  

 –  

{32} 

{5} 

{41} 

 –  

 

We note that the total angular momentum J = 3/2- for the GS or J = 1/2- for the 

FES in P waves of 5He or 5Li nuclei can also be obtained in the doublet spin channel 

of 2H3He (2H3H) clusters with total spin S = 1/2 and in the quartet channel with S = 3/2. 

Therefore, the GS and FES of these systems are actually 2+4P mixtures of such 

channels. These spin-mixed 2+4Р states turn out to be mixed also according to Young 

diagrams, since the doublet pure channel corresponds to the {41} diagram, and the 

quartet channel to the {32} one [47, p. 55].  

However, now only one Young diagram corresponds to each spin channel, but not 

two, as it was in the previous case with mixing one spin channel in terms of orbital 

symmetries. Therefore, the potentials obtained below with J = 3/2- and 1/2- for GS and 

FES are called pure, although in reality they are mixed along the spin, and, hence, along 

the Young diagrams. 

In the present calculations of the nuclear characteristics of the reaction under 

consideration, the interaction potentials of particles have the form of a Gaussian 

attraction  

 

)()αexp(}){,(
c

2

}{}{,0
rVrVfJLSrV

fJLSfJLS
   (2.8) 

 

with the Coulomb potential Vc(r) of two point particles for the zero Coulomb radius 

that has the form which was given above [47, p. 56]. 

Follow the reference [101] we considered the 2H3He scattering phase shifts in the 

energy range up to 3 MeV in the c.m., which are sufficient for solving various 

astrophysical problems, in particular, for calculating the total cross sections for the 

capture reaction.  

Parameters of partial, i.e. depending on 2S+1LJ, potentials of the continuous 

spectrum, given in Table 2.2, including the resonance states potentials, which will be 
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described in detail later. The characteristics of these states are given in the last column 

of Table 2.2 [82, p. 27-29, 83, p. 16-18]. 

 

Table 2.2 – Parameters of the partial potentials of elastic 2H3He scattering. The 

characteristics of the potentials of the resonance states are given in the last column 

 

2S+1LJ V0, MeV , fm-2 

The resonance 

energy Ecm, 

MeV 

The angular 

momentum and parity 

J 
2S1/2, 

2+4D3/2  -30.0 0.15   
2+4D5/2 -31.29 0.09 3.35 5/2+ 

2P1/2 -48.0 0.1   
2+4P3/2 -2412.2 4.0 2.89 3/2- 

4S3/2
 -34.5  

(-34.85) 
0.1 0.48 3/2+ 

4D1/2
 -39.88 0.115 4.14 1/2+ 

4D7/2
 31.99 0.09 3.06 7/2+ 

4P1/2 -30.0 0.1   
4P5/2

 - 456.7 0.8 5.67 5/2- 

 

The phase shifts of the non-resonance doublet potentials from Table 2.2, given in 

ordinary type, are shown by the solid curves in Figure 2.3a. For the potential of the 
2D3/2 wave the parameters of the 2S1/2 potential at L = 2 were used. In P3/2 and D5/2 

scattering waves that are mixed along the spin channel, there are resonances that follow 

from the nuclear spectra shown in Figure 2.1 [82, p. 27-29, 83, p. 16-18]. Parameters 

of such potentials are given in bold face in Table 2.2 and the corresponding phase shifts 

are shown in Figure 2.3a by the dashed curves [47, p. 56].  

Let us further consider the potentials for quartet scattering states whose phase 

shifts are shown by the solid curves in Figure 2.3b. If we plot the 4S3/2 potential over 

the scattering phase shifts, the parameters from Table 2.2 can be used. The phase shift 

of this potential is shown in Figure 3b by the solid curve 1. Using this potential at L = 2 

the 4D3/2 phase shift is obtained. It is shown in Figure 2.3b by the solid curve 2 [47, p. 

57].  

At 3.7 MeV in the c.m. the potential leads to a resonance with a width of 4.3 MeV 

in the c.m. It should be noted that in the spectra shown in Figure 2.1 such a resonance 

is not observed. Therefore, for 4D3/2 waves we will use the 2D3/2 scattering potential, 

since these states are spin-mixed with the same total momentum [47, p. 58]. 

Now we recall that we use a single-channel d + 3He model in which the influence 

of other channels is not taken into account. To substantiate the using of a single-channel 

model in this case, we provide interesting results from [94, p. 2-4], where they 

considered d + 3He elastic scattering in the framework of the ab initio method.  
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Symbols ■ and ♦ describes the results from [101, p. 98-99] for the 2P1/2 and 2P3/2 waves, 

▲ and  triangles – for the 2D3/2 and 2D5/2 waves, respectively, ● – for the 2S1/2 wave. The 

notation for several total momentums 2P1/2,3/2 refers to the results of [101, p. 98-99].  

 

Figure 2.3a – Comparison of the 2H+3He doublet phase shifts mixed by orbital diagrams 

calculated using the potentials from Table 2.2 with results from [101, p. 98-99] 

 

In Figure 2.3c we compare our theoretical calculations of the doublet and quartet S 

scattering phase shifts performed within the framework of the MPCM with to ab initio 

calculations [94, p. 2-4] and the experimental data. From the figure one can see that for 

the 2S1/2 phase shift all variations of the calculations for a different number of channels 

yield very close results, i.e. the influence of other channels is almost negligible. For the 

ab initio 4S3/2 phase shift channel coupling accounting (black dashed and dotted curves) 

also appears very slightly [47, p. 59]. 

The real agreement of the scattering phase shifts extracted from the experiment 

[101, p. 98-99], the present calculations, and ab initio is observed only when the 

channel p + 4He and channel 2H* + 3He with the excited deuteron coupling is used in 

[94, p. 2-4]. In our opinion, this is a rather unexpected result, which, apparently, 

requires physical substantiation and interpretation. At the same time, for the purposes 

of our work, we can assume that the presented comparison makes it possible to draw a 

conclusion that the single-channel approximation employed in the present work is 

justified, since taking into account the two channels p + 4He and 2H* + 3He in the ab 

initio method practically does not change the results for the scattering phase shifts in 

the single-channel case. It is well known that at low energies the asymptotic part of 

wave function plays a significant role in the most of nuclear processes, but at high 

energy the internal part of the wave function is very important due the strong NN 
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interaction at small distances, while the latter one has a slight influence on low energy 

characteristics of reactions [47, p. 57]. 
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Symbols ■, ♦, and □ describes results from [101, p. 98-99] for the 4P1/2, 
4P3/2 and 4P5/2 

waves, ▲ – for the 4D1/2,
  – for the 4D3/2, ◄ – for the 4D5/2, and ► – for the 4D7/2 waves, 

dots – for the 4S3/2 wave. The notation for several total momentums 4P1/2,3/2,5/2 is explained 

in Figure 2.3a. 

 

Figure 2.3b – Comparison of the 2H+3He quartet phase shifts (solid curve), which pure 

by orbital diagrams calculated using the potentials from Table 2.2 with results from 

[101, p. 98-99] 

 

Let us now consider in more detail the potentials for partial waves with 

resonances. Figure 2.1 clearly shows the first resonance of 5Li, which is 0.482 MeV 

above the 2H3He channel threshold. The excitation energy, momentum and width in 

c.m are 16.87 MeV, J = 3/2+, 0.267 MeV, respectively. This state can be attributed to 

a 4S3/2 wave of the continuous spectrum, and its description requires a potential with 

FS for the diagram {5} and parameters 

 

VS3/2 = -34.85 MeV and  = 0.1 fm-2  (2.9) 

 

which lead to a resonance energy of 0.480 (1) MeV in c.m [47, p. 57].  
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Potentials in MPCM are represented by group 1 (red curves), and ab initio [94, p. 2-4] 

corresponds the group 2 (black curves). The dashed curve – calculation taking into 

account the coupling of the p + 4He and d + 3He channels; dotted curve – calculation 

without regard to channel coupling; solid curve – calculation taking into account the 

channel p + 4He and the excited deuteron in the d* + 3He channel coupling. 

 

Figure 2.3c – Comparison of the calculations of the scattering S phase shifts for 

potentials in MPCM and in ab initio [94, p. 2-4] 

 

The corresponding phase shift is shown in Figure 2.3b with the red dashed curve 

1. For L = 2, the potential gives a 4D3/2 phase shift resonance at 3.6(1) MeV in c.m. 

with a width of 4.1(1) MeV in c.m. Its phase shift is shown in Figure 2.3b with the 

dashed curve 2. The potential with parameters (2.9) differs little from the one given in 

Table 2.2, but more accurately describes the resonance energy. At a resonance energy 

of 0.480 MeV, it leads to the scattering phase shift equal to 89.45. 

The second resonance in the 2H3He system appears at 19.28 MeV with the angular 

momentum J = 3/2- and width of 0.959 MeV [82, p. 27-29] is laying at 19.28 MeV 

relative to the GS (2.892 MeV towards the channel threshold). The P3/2 wave may 

match this state in doublet or quartet spin channel. The phase shift analysis presented 

in [101, p. 98-99] shows no any resonance behavior of the P3/2 waves. While, the 2P 

phase shift illuminates the smooth rising in the doublet channel, its quartet partner 4P 

is clearly slowly decreasing.  

For properly reproducing this 2+4P3/2 resonance we need a potential with the FS 

and the following parameters [47, p. 59]: 

 

VP3/2 = -2412.2 MeV and  = 4.0 fm-2.  (2.10) 
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The potential (2.10) provides the following resonance parameters: the position is 

fitted at the energy of 2.890(1) MeV in the c.m., and the corresponding width is 0.962(1) 

MeV in c.m. Its P3/2 phase shift is shown in Figure 2.3a with a dashed curve, and at the 

resonance energy it has a value of 90.0(1). 

In Figure 2.1 the first column shows the higher laying levels for J = 7/2+ and 

J = 5/2+ with the following corresponding parameters: the energy position of 19.45 

and 19.71 MeV relative to the GS (or 3.06 and 3.32 MeV in c.m. relative to the channel 

threshold), the level width of 3.28 and 4.31 MeV in c.m. (see Table 5.3 in [82, p. 27]).  

The strong E1 transitions to the GS are conditioned by direct capture from the 

doublet and quartet channels corresponding to the second 5/2+ resonance. For a correct 

description of the 2+4D5/2 resonance a potential without the FS and with the following 

parameters [47, p. 59] 

 

VD5/2 = -31.29 MeV and  = 0.09 fm-2  (2.11) 

 

is needed. 

The calculated D5/2 scattering phase shift is shown in Figure 2.3a with the dotted 

curve. At the resonance energy the value of this phase shift is 90.0(1). The calculated 

resonance parameters are the following: the energy position of 3.32 (1) MeV in c.m., 

and the width of 4.09(1) MeV in c.m. There is no resonance for the D5/2 phases shift at 

such energies in Ref. [101, p. 98-99]. The 4D phase shifts have a slight tendency to rise 

at 3.0 MeV in c.m [47, p. 59].  

The level with J = 7/2+ at 3.06 MeV in c.m. and a width of 3.28 MeV in c.m. can 

be attributed to the 4D7/2 state. In this case the M2 transition to the GS is possible, the 

total cross sections for which will be noticeably smaller than the cross sections for the 

E1 processes [47, p. 59]. However, we give the potential without the FS for this 

resonance the following parameters 

 

VD7/2 = -31.99 MeV and  = 0.09 fm-2.  (2.12) 

 

This potential leads to resonance at energy of 3.06(1) MeV in c.m. with a width 

of 3.18(1) MeV in c.m., its D7/2 scattering phase shift is shown in Figure 2.3b with the 

dotted curve 3. At the resonance energy the phase shift has a value of 90.0(1). 

The next level can be detected at the excitation energy of 20.53 MeV or at 4.14 

MeV in c.m. with a momentum J = 1/2+ and a width of 5.0 MeV in c.m., so it can be 

attributed to the 4D1/2 resonance. A correct description of such resonance requires a 

potential with the following parameters [47, p. 59]: 

 

VD1/2 = -39.88 MeV and  = 0.115 fm-2  (2.13) 

 

This potential leads to the resonance at energy of 4.14(1) MeV in c.m. with a 

width of 5.1(1) MeV in c.m., and its scattering phase shift is shown in Figure 2.3b by 

the dotted curve 4. At resonance energy the phase shift has a value of 90.0(1). 
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Let us consider one more level, which lies at an excitation energy of 22.06 MeV 

or 5.67 MeV in c.m. with a momentum J = 5/2- and a width of 15.5 MeV in c.m. This 

resonance can be attributed to the 4P5/2 state. A potential with the FS and parameters 

 

VP5/2 = -456.7 MeV and  = 0.8 fm-2  (2.14) 

 

is required to correctly describe the 4P5/2 state. 

The potential leads to resonance at the energy of 5.67(1) MeV in c.m. with a width 

of 15.7(1) MeV in c.m., and its scattering phase shift is shown in Figure 2.3b with a 

dotted curve 3; at the resonance energy the phase shift has a value of 90.0(1). 

The detailed study of these levels shows that the phase shift analysis performed 

in Ref. [101, p. 98-99] does not take into account the position of the resonances under 

consideration with large widths [47, p. 60].  

The phase shift analysis is a subject to further refinement with the expansion of 

the energy region to 5–7 MeV in c.m. However, in order to make a detailed phase shift 

analysis the measurements of differential cross sections in the energy region of interest 

in steps of 0.3–0.5 MeV (in the region of narrow resonances the energy step should be 

even smaller) is required.  

In order to properly depict the phase shift resonance, it is required to have a step 

of measuring cross sections in the resonance region of not less than /5. In other words, 

within the width of the resonance there must be at least five points of the cross sections 

measurement. Only in this case the resonance form of the phase shift appears quite 

accurately [47, p. 60]. 

For example, for a resonance of the potential (2.10) described with a width of 

about  ~ 1 MeV, a step of ~0.2 MeV is needed. For the potential (2.9) with resonance 

in the 4S wave, the energy step should be of the order of 0.05–0.06 MeV. 

Now consider the potential of the GS of 5Li in the 2H3He channel [47, p. 60]. 

The P states with potentials from Table 2.2 allowed in the doublet and quartet 

channels have an energy that does not agree with the binding energy of the Р3/2 

and Р1/2 levels of the ground and first excited states of 5Li, whose spectrum is 

shown in Figure 2.1 [82, p. 27-29, 83, p. 16-18].  

These potentials depend on two Young orbital diagrams, and the BS potential 

should depend only on one orbital diagram {41} [98, p. 1513-1514]. In addition, 

the channel energies for the GS and FES of 5Li were specified above. Therefore, 

we carried out a refinement of the potentials of these BSs and the results are given 

in Table 2.3, where the width parameter  is equal to 0.18 fm-2. The binding energy 

of the FES is obtained from [82, p. 27-29], where 1.49 MeV above the GS is given. 

In the calculations of the BS energy the exact masses of the particles were 

used, and the relative accuracy of the calculations for binding energy is at a level 

of 10-6 MeV [47, p. 60]. 

In Table 2.3, in the third column, the experimental energy values of the levels [82, 

p. 27-29] are given in parenthesis. The dimensionless asymptotic normalizing 

coefficients (ANC) Cw are given in the last column in Table 2.3. They are defined 

according to scientific paper [102] 
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0 1/2 0( ) 2 (2 ).L W LR k C W k R     (2.15) 

 

In Equation (2.15) χL(R) is the numerical GS radial WF, viz. the solution of the 

Schrödinger equation normalized to unit, W-ηL+1/2(2k0R) is Whittaker function, k0 is 

a wave number related to the channel binding energy, η is the Coulomb parameter, 

L is the orbital angular momentum of the bound state [22, p. 63].  

 

Table 2.3 – Potential parameters for the 2Н3He system in pure state by Young diagrams 

for the GS and FES 

 

LJ V0, MeV Ebs (Eexp ([18]), MeV Cw Rrms, fm 

Р3/2 (GS) -83.505593 
-16.388000  

(-16.388) 
6.30(1) 2.25 

Р1/2 (FES) -80.485333 
-14.898000  

(-14.898)  
5.74(1) 2.26 

 

The pointed ANC error is determined by its averaging over the interval from 

5–6 up to 8–10 fm and shown in parenthesis. The charge root mean square radii 

(Rrms) for the BSs of 5Li in the 2H3He channel were also calculated and are given in 

Table 2.3 [47, p. 61]. 

Since the ground P3/2 state is spin-mixed, it is necessary to consider the E1 

transitions from the doublet and quartet states of S and D scattering. In the framework 

of the MPCM, it is impossible to explicitly isolate the 2Р3/2 and 4Р3/2 parts in the WF of 

the GS. So, for the calculations we will use the spin-mixed function of the P3/2 state, 

which is obtained when solving the Schrödinger equation with a given GS potential 

from Table 2.3. For the scattering states quartet and mixed over the Young diagrams 

doublet potentials from Table 2.2 are used and also the resonance potentials (2.9) – 

(2.14) [47, p. 61]. 

 

2.2.4 Multipole transitions for the radiative 3He(2H,γ)5Li capture 

The complete set of E1 and M1 transition amplitudes accounted in our 

calculations is given in Table 2.4 [47, p. 61]. Transitions from the resonance state with 

the main input to the total cross sections are № 2, 4, 6, 9, 10, 12. Transitions from non-

resonance scattering states give a noticeably smaller contribution at low energies. The 

last column contains the values of the coefficient P2 in expressions (2.2) and (2.3). 

The interaction potentials have been corroborated by the experimental data on the 

elastic scattering phase shifts and energy levels spectra [47, p. 61], so, the WFs 

obtained as the solutions of the Schrödinger equation with those potentials account 

effectively the cluster system states, in particular, of the mixing by channel spin.  

Therefore, the total cross section of the Е1 transition from the mixed continuous 

states to the spin mixed GS may be taken as simple doubling of the partial cross section 

as each is calculated with the same functions. However, spin algebraic factors are 

specified for every matrix element (2.2) [23, p. 29-31]: 
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2 2 2 4 4 4

0 3/2 3/2 3/2 3/2( 1) ( ) ( ).E D P D P        (2.16) 

 

Table 2.4 – Transitions accounted for calculations the total radiative 3He(2H,γ)5Li 

capture cross section 

 

№ (2S+1LJ)i
 The resonance 

energy in MeV 

The angular 

momentum 

and parity J 

Transition (2S+1LJ)f
 P2 

1  2S1/2   E1 2P3/2 4 

2  4S3/2 16.87 3/2+ E1 4P3/2 4 

3  2P1/2
   M1 2P3/2

 4/3 

4  2P3/2 19.28 3/2- M1 2P3/2 5/3 

5  4P1/2
   M1 4P3/2

 10/3 

6  4P3/2 19.28 3/2- M1 4P3/2 22/15 

7  4P5/2
 22.06 5/2- M1 4P3/2

 18/5 

8  2D3/2   E1 2P3/2 4/5 

9  2D5/2 19.71 5/2+ E1 2P3/2 36/5 

10  4D1/2 20.53 1/2+ E1 4P3/2 2/5 

11  4D3/2   E1 4P3/2 64/25 

12  4D5/2 19.71 5/2+ E1 4P3/2 126/25 

 

In reality, there is only one transition from the scattering state to the GS, rather 

than two different Е1(2σ + 4σ) processes. The averaging procedure concerns the 

transitions from the D5/2 and D3/2 scattering states to the P3/2 GS of 5Li in the 2H3He 

channel [47, p. 61].  

Thus, the total cross section of the capture process on the GS for electromagnetic 

E1 transitions is represented as the following combination of partial cross sections 

 
2 2 4 4 4 4

0 1/2 3/2 3/2 3/2 1/2 3/2

2 2 4 4 2 2

3/2 3/2 3/2 3/2 5/2 3/2

4 4

5/2 3/2

( 1) ( ) ( ) ( )

[ ( ) ( )] / 2 [ ( )

( )] / 2.

E S P S P D P

D P D P D P

D P

          

         

  

  (2.17) 

 

Since for the M1 transitions there is also spin mixing for some P scattering waves, 

the total cross section is written in the same way as E1 transitions to the GS: 

 
4 4 2 2 4 4

0 5/2 3/2 1/2 3/2 1/2 3/2

2 2 4 4

3/2 3/2 3/2 3/2

( 1) ( ) [ ( ) ( )] / 2

[ ( ) ( )] / 2.

M P P P P P P

P P P P

          

     
  (2.18) 

 

It should be noted that M1 transitions from non-resonance P scattering states exert 

a noticeable effect on the total cross sections only at energies above 300-400 keV in 

c.m. Thus, we have identified all the major transitions that may contribute to the total 

cross sections of the 3He(2H,γ)5Li capture process at low energies, which are treated 
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here. Of course, the M2 transition is also possible, but we do not consider it because of 

the smallness of its cross sections [47, p. 62]. 

 

2.3 Radiative n10Be capture process 

The data [103] have been obtained from recalculation of experimental 

measurements of /dB dE  Coulomb dissociation probability for 11Be [104].  

However, the new results for 11Be Coulomb dissociation have subsequently been 

obtained and presented in [105, 106]. Moreover, the results obtained by T. Nakamura 

and Y. Kondo in [106, p. 67-119] should be considered as an improvement of previous 

data presented in [104, p. 298-300]. We finally got an opportunity to compare the total 

cross-sections from different experimental data [104, p. 298-300, 105, p. 4-10, 106, p. 

67-119] between each other and with previous data [103, p. 326c]. 

Such a sequential analysis of different experimental data is presented further in 

Subsection 2.3.2.  

The theoretical calculations of the radiative capture total cross-sections, reaction 

rates, and analytical parameterizations actual for astrophysical calculations of 11Be 

isotope synthesis balance are presented in Section 4.  

 

2.3.1 Structure of n10Be discrete states 

For 10Be as for 10B [23, p. 152] the orbital Young tableau {442} is used, so for 

n10Be system we have {1}  {442} = {542} + {443} + {4421} [107, 108]. The first of 

the obtained diagrams is compatible with the orbital moment L = 0, 2, 3, 4, and it is 

forbidden because five nucleons cannot be in the s-shell. The second tableau is allowed 

and compatible with the orbital moment L = 1, 2, 3, 4, and the third one is also allowed 

and compatible with L = 1, 2, 3 [48, p. 95]. 

Due to the lack of Young diagrams’ product tables for number of particles, that is 

equal to 10 and 11, it is impossible to classify accurately the cluster states in the 

considered particles system.  

However, even so accurate assessment of the orbital symmetries enables the 

determination of the presence of the FSs in the S and D-waves and the lack of the FSs 

for P states. These very structures of FSs and ASs in the different partial waves enables 

to construct further the intercluster interaction potentials required for the calculation of 

the radiative capture total cross-sections [48, p. 95-96]. 

Thus, taking into account only the lowest partial waves with the orbital moment 

L = 0, 1, 2 we can say that for n10Be system (it is known that for 10Вe J,Т = 0+,1 

[109]) there is only the allowed state (AS) in the potentials of 2P wave, while 2S-, 
2D-waves have the forbidden state (FS). The state in the 2S1/2 wave with the FS 

corresponds to the 11Вe ground state with J,Т = 1/2+,3/2 and corresponds to the 

n10Be system binding energy of, that is equal to -0.5016 MeV [110, p. 99-102].  

Let us note that the 2P waves correspond to two allowed Young diagrams {443} 

and {4421}. This situation is, seemingly, the same as in N2H or N10B systems [111-

113], when the scattering potentials depend on two Young diagrams, while the BSs 

potentials are defined by the only one [114].  
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Therefore, such potentials for one partial wave in the scattering states and discrete 

spectrum can be different. Here it is also assumed that the potential of the 2P1/2 bound 

state (see Figure 2.4) corresponds to one tableau {443} that is the first excited state 

(FES) of 11Be at the energy 0.32004 MeV relative to the GS [48, p. 96]. 

To fix the idea we will consider that for the discrete spectrum the allowed state 

in the 2P1/2 wave is bound, while for the scattering processes it is unbound. 

Therefore, the depth of such potential can be set equal to zero.  

Let us turn again our attention to that these potentials can be different because 

they correspond to the states with different Young diagrams. For the potential of 
2S1/2 scattering wave or the discrete spectrum in the n10B system the FSs and ASs 

are bound [48, P.96]. 

 
 

Figure 2.4 – 11Вe energy levels in MeV (c.m.) and their widths 

 

Now let us consider the FES that is bound in the n10Be channel, and several 

resonance states of 11Be [110, p. 99-102], which are unbound in the n10Be channel and 

correspond to the resonances in the n10Be scattering: 

1. The first excited state (ES) of 11Be is found at the energy that is equal to 0.32004 

MeV relative to the GS with the moment J = 1/2- or -0.18156 MeV relative to the 

threshold of n10Be channel. This state can be related to the doublet 2P1/2 level with the 

bound AS but without the bound FSs (see Figure 2.4).   
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2. The first resonance state has the excitation energy equal to 1.783 MeV relative 

to the GS or 1.2814 MeV (c.m.) relative to the threshold of the n10Be channel. For this 

level J is equal to 5/2+, that leads to L=2 and enables to consider it as the 2D5/2 

resonance in the n10Be system at 1.41 MeV in the laboratory system (l.s.). The potential 

of this resonance has the bound FS. This resonance width is equal to 100(10) keV in 

the center-of-mass system [48, p. 96]. 

3. The second resonance state energy is equal to 2.654 MeV relative to the GS or 

2.1524 MeV (c.m.) relative to the channel threshold with the width equal to 206(8) keV 

(c.m.). Its moment J is equal to 3/2- [110, p. 101]. These characteristics enable to 

consider it as 2P3/2 resonance in n10Be system at 2.37 MeV (l.s.), and its potential does 

not have any bound FSs or ASs [48, p. 96]. 

4. The third resonance state at the excitation energy equal to 3.400(6) MeV (c.m.) 

with the width 122(8) keV (c.m.) has the moment J = 3/2+ (or 3/2-) [110, p. 101] that 

leads to L = 2 and enables to consider it as the 2D3/2 resonance in the n10Be system at 

3.19 MeV (l.s.). However, the ambiguity in parity of this level enables to assume 2P3/2 

state for it also. Due to such ambiguity we will not consider this resonance [48, p. 96]. 

5. We did not consider the next two resonances shown in Figure 2.4 because its 

width is of the order of 10 keV and less. 

6. The resonance at 5.255(3) MeV has the width equal to 45(10) keV, the moment 

J = 5/2- and can be corresponded with 2P5/2 wave. However, its width is rather less 

than the low resonances width, and we will not consider it [48, p. 96]. 

For higher energies there are only two resonances. The first one has the energy 

equal to 8.020(20) MeV with the width equal to 230(55) keV and the moment J = 3/2, 

and the second one with the energy equal to 10.59(50) MeV, the width equal to 210(40) 

keV, and J = 5/2-.  

These two resonances have the totally determined characteristics [110, p. 101]. 

The first of them may be correlated with 2P3/2 state, and in this case the E1 transition 

to the GS can be considered. However, its width relative to the excitation energy is 

comparatively small, so the contribution of this potential into the total cross-sections 

at such energy will be relatively small [48, p. 96].  

For the second level only M2 transition is possible, so we will not consider it. As 

the result we will take into account only the second resonance at 2.654 MeV, which 

has the larger width and well determined quantum numbers, though the neutron 

radiative capture on 10Be total cross-section will be calculated up to 10 MeV [48, p. 

96]. 

 

2.3.2 The phase shifts and potentials for n10Be scattering states 

As n10Be interaction in each partial wave with the given orbital moment L and 

other quantum numbers including {f} we usually use the potential in the Gauss type 

form with the point Coulomb term which is simply absent for the neutron processes 

[48, p. 97] 

 

V(r,JLS{f}) = V0(JLS{f})exp{-(JLS{f})r2}.  (2.19) 
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11Be GS in the n10Be channel is 2S1/2 level, and such potential should describe 

correctly the binding energy and the AC of this channel. To determine this constant 

from the available experimental data let’s treat data for the spectroscopic factors Sf and 

asymptotic normalizing coefficients ANC, connected with the AC. The results for ANC 

given in [37, p. 108] are presented in Table 2.5, also in this table we added some results 

from [36, p. 1545-1446]. 

 

Table 2.5 – Data for ANC of 11Be in the n10Be channel 

 

The reaction which 

the ANC was obtained 

from 

The ANC in fm-

1/2 for the GS 

The ANC in fm-1/2 

for the FES 
Reference 

 (d,p0) at 12 MeV 0.723(16) 0.133(4) [37, p. 108] 

 (d,p0) at 25 MeV 0.715(35) 0.128(6) [37, p. 108] 

(d,p0) at 25 MeV 0.81(5) 0.18(1) [36, p. 1545-1446] 

 0.68–0.86 0.122–0.19 Present (Range) 

 0.749 0.147 Present (Average NCA ) 

 

Furthermore, we succeeded in finding a lot of data for the spectroscopic factors 

of 11Be in the n10Be channel [110, p. 101], so let’s present their values in the separate 

Table 2.6 [48, p. 97]. 

 

Table 2.6 – Data for the spectroscopic S-factors of 11Be in the n10Be channel 

 

S for the GS S for the FES Reference 

0.87(13)  [115] 

0.72(4)  [116] 

0.61(5)  [105, p. 9] 

0.73(6) 0.6(2) [117] 

0.73(6) 0.63(15) [118] 

0.77 0.96 [119] 

0.56–1.0 0.4–0.96 Present (Range) 

0.74 0.73 Present (Average S ) 

 

Next on the basis of the given above expressions for the GS we obtain the value 

of 1/2/ 0.87fm ,NCA S C    and as 02 0.546,k   so the dimensionless AC 

determined as 0/ 2WC C k  is equal to 1.59.  

However, the range of the spectroscopic S-factor values is so wide that the 
WC  

values for the average ANC can be in the region 1.37–1.83. If we take into account the 

ANC varieties, this range may be expanded up to 1.25–2.10 [48, p. 97].  
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Similarly to the GS, for the first excited state at 02 0.423k   we obtain 

WC  = 0.41, and the range of 
WC  values for the average ANC is from 0.35 to 0.55. 

If we take into account the ANC varieties, the range of the dimensionless AC values 

can be increased up to 0.29–0.71. These results are used further for the construction of 

the GS and FES potentials which should be agreed with the binding energy of these 

levels and their AC values [48, p. 97]. 

Specifically, for the potential of 2S1/2 GS with the FS the following parameters 

may be used 

 

VS1/2 = 174.15483 MeV and 1/2 = 0.4 fm-2.  (2.20) 

 

It leads to the binding energy that is equal to -0.501600 MeV at the used here 

finite-difference method (FDM) accuracy equals 10-6 MeV [120], the AC is equal to 

Cw = 1.32(1) in the range 7–30 fm, the mass radius is equal to 2.88 fm, the charge 

radius is equal to 2.43 fm. The AC varieties are determined by its averaging over the 

pointed range of distances [48, p. 97]. 

Such potential of the GS with the FS is in total accordance with the classification 

of states according to Young diagrams, given above, and leads to the 11Be charge radius 

being in a good agreement with data [110, p. 101].  

The potential parameters (2.20) enable to obtain the AC value at its lower limit. 

The potential phase shift is shown in Figure 2.5 by the red solid line. This potential at 

the orbital moment L = 2 leads to the nonresonance 2D scattering phase shift without 

the spin-orbit splitting, that is shown in Figure 2.5 by the red dotted line.  

The n10Be scattering 2S1/2 phase shifts obtained in [121] are presented in the same 

figure by the black points [48, p. 97]. 

For the potential of the resonance 2D5/2 wave with the FS, which is used further 

for consideration of the E2 transitions, the following parameters have been obtained 

 

VD5/2 = 474.505 MeV and 5/2 = 0.37 fm-2.  (2.21) 

 

The potential leads to the resonance at 1.41(1) MeV (l.s.) and the width c.m. equal 

to 100(1) keV, that is in a complete agreement with data [110, p. 101]. Its phase shift 

is shown in Figure 2.5 by the red dashed line [48, p. 97]. 

The potential of the 2P3/2 resonance state at the energy equal to 2.654 MeV (c.m.) 

with the width equal to 206(8) keV (c.m.) relative to the GS or 2.37 MeV (l.s.) above 

the threshold of the n10Be channel without the FS, can have parameters  

 

VP3/2 = 10935.65 MeV and 1/2 = 40.0 fm-2.  (2.22) 

 

It leads to the resonance energy equal to 2.37(1) MeV (l.s.) at the width equal to 

204(1) keV (c.m.), and its phase shift is presented in Figure 2.5 by the blue dashed line. 

The potential of 2P1/2 first excited state of 11Be without the FS has the parameters 

 

VP1/2= 192.799497 MeV and 1/2= 0.7 fm-2.  (2.23) 
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The potential leads to the binding energy equal to -0.181560 MeV at the FDM 

accuracy equal to 10-6 MeV [120], the AC is equal to 0.27(1) in the range of 10 – 30 

fm, the mass radius is equal to 2.61 fm, and the charge radius is equal to 2.40 fm [48, 

p. 97-98].  

This potential phase shift is shown in Figure 2.5 by the red dotted-dashed line. 

The parameters of potential (2.23) have been optimized to describe correctly the total 

cross-sections of the neutron capture on 10Be at the thermal energy equal to 25.3 meV, 

which were obtained in [36, 1546-1547], and the value of its dimensionless AC is 

approximately near the lower limit 0.29 – 0.71 [48, p. 98].  

In this work the matrix elements (ME) for the total cross-sections computation 

were calculated at the distances up to 30 fm, and the parameters of this potential were 

also selected from [36, 1546-1547] to describe correctly the neutron capture on 10Be 

total cross-sections at the thermal energy equals 25.3 meV.  

Subsequently it was ascertained that due to extremely small value of the binding 

energy for the GS and, particularly, for the FES the ME calculation should be 

performed at large distances. Table 2.7 shows the values of the total cross-sections for 

the GS and FES capture, and their convergence depending on the upper integration 

limit Rmax in ME [48, p. 98].  

As one can see from Table 2.7, the ME have the correct values only at the 

distances equal to 100-150 fm. Therefore, in all present calculations of the total cross-

sections of the given system we used the ME integration distance equal to 150 fm. As 

a result, new parameters of potential (2.23) have been obtained [48, p. 98].  

The GS potential was also changed that is caused by changing the capture total 

cross-sections presented in Section 4, so the parameters of this potential were selected 

for the correct description of new data in energy region of the order of 1 MeV.  

The results of [122] may be considered as taking into account only the core effects 

in 11Be. But in the present work we have taken into account the halo effects caused by 

the odd neutron of this nucleus. These effects appear generally in the cross-sections of 

capture to the FES [48, p. 98].  

As it can be seen from the tables given above, the Rmax increasing from 30 to 150 

fm leads to the total cross-section increasing by about 2,5 times in the case of the 

capture to the GS, and by almost 6 times for the capture to the FES. As the 2P1/2 

potential of 11Be FES is constructed so that to describe correctly the thermal cross-

sections, so the difference between the given results and results [122, p. 6-9] at low 

energies is only in its parameters.  

The results for the total cross-sections obtained in the present work by using new 

parameters (2.23) insignificantly differ from the results [122, p. 9-12] obtained by 

using the previous parameters. Furthermore, the capture cross-section for the 

transitions to the GS is increased by two times at low energies because in this case the 

ME is calculated up to 150 fm [48, p. 98]. 

Let us return to the consideration of criteria for construction of the 2P1/2 scattering 

wave potential that may differ from the FES potential due to the difference between 

the Young diagrams for these states.  
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Red solid line shows the phase shift of potential (2.20); red dashed line shows the phase 

shift of potential (2.21); blue dashed line shows the phase shift of potential (2.22); red 

dotted-dashed line shows the phase shift of potential (2.23); blue dotted-dashed line 

shows the phase shift of potential (2.24); red dotted line shows the nonresonance 2D 

scattering phase shift without the spin-orbit splitting. Black points show n10Be 

scattering 2S1/2 phase shifts obtained in [121]. 

 

Figure 2.5 – n10Be elastic scattering phase shifts in 2S1/2 and 2D waves 

 

Table 2.7 – The value of the neutron capture on 10Be total cross-section for the 

transition to the GS for potential (2.20) and to the FES for potential (2.23) calculated 

at 1 keV 

 

Rmax, fm 
GS FES 

tot, μb tot, μb 

30 0.27 0.21 

50 0.56 0.92 

100 0.64 1.50 

150 0.64 1.52 

200 0.64 1.52 

 

First, as it was shown above, such potential should not have the forbidden state. 

As we have not the results of the phase shift analysis for the n10Be elastic scattering 

and in 11Be spectra there is not the resonance with the accurately determined moment 

J = 1/2- and the known width [110, p. 101] at energy lower than 10.0 MeV, we will 

assume that 2P1/2 potential must lead to practically zero scattering phase shifts in this 
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energy region, therefore its parameters can have zero width. For 2S1/2 scattering 

potential the interaction between 2S1/2 GS and the FS, i.e. the parameters of potential 

(2.20), will be used [48, p. 98]. 
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 3 ASTROPHYSICAL d3He PROCESS AT LOW ENERGIES 

In this Section we present the results obtained with the potentials from Section 2 

for the total cross section, the astrophysical S-factor, the S-factor screening effects, and 

the rate of the 3He(2H,γ)5Li radiative capture reaction.  

In addition, a possible scenario for the formation of 6Li in astrophysical processes 

involving the short-lived 5Li isotope was considered. The two-step process 2H + 3He  
5Li +  and n + 5Li +   6Li +  is proposed as an alternative way of 6Li formation at 

the BBN. 

 

3.1 Results for total cross sections, astrophysical S-factor and reaction rate 

3.1.1 Total cross section 

The results of the calculated E1 and M1 radiative capture in 2Н3Не cluster channel 

at the energies up to 5.0–6.0 MeV are presented in Figure 3.1. The solid curve 1 denotes 

the cross section for the E1 transition from the 2S and 4S scattering states to the GS 
2+4Р3/2 defined by the interaction potential parameters from Table 2.3, while for the 

scattering potentials, the data from Table 2.2 are used. Cross sections for the E1 

transitions from the 2S wave are of few orders suppressed as it is of non-resonance 

behavior [47, p. 62]. 
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Experimental data: ● are from [30, p. 56-58] and ▲ is from [81, p. 181-183], band 5 – 

results from [34, R63-R64]. Calculated curves correspond to the potential parameters of 

Tables 2 and 3 and text. Two last black dots are taken from Figure 9 of the work [30, p. 63]. 

 

Figure 3.1a – Total cross section for 3He(2H,γ)5Li bellow 1.0 MeV. 
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Experimental data: ● are from [30, p. 56-58], ▲ is from [81, p. 181-183], ♦ – from [88, 

p. 691-692, 89, p. 796-797], ■ – from [84, p. 344-345], Δ – from [31, p. 238-239], ★ – 

from [27, p. 1023-1029], □ – from [28, p. 593-602], cyan band 5 – results from [34, p. 

R.63-R64]. Two last black dots (●) are taken from Figure 9 of the work [30, p. 63]. 

 

Figure 3.1b – Total cross section for 3He(2H,γ)5Li bellow 5.0 MeV. 

 

Solid curve 2 in Figure 3.1 denotes the cross section for the Е1 transition to the 

GS from the resonating 2+4D5/2 waves calculated with parameters (7) and (9). This result 

includes all other small in value amplitudes for the non-resonating D waves listed in 

Table 2 (see Table 4). The main contribution here is given by the D5/2 resonance, and 

the contribution of the D1/2 wave is very small [47, p. 62].  

Curve 3 in Figure 3.1 shows the contribution of the М1 transitions from the 

resonating 2+4P3/2 and 2+4P5/2 waves corresponding to potentials (6) and (10) and non-

resonance set for Р potentials from Table 2. Figure 3.1 clearly shows the P3/2 resonance 

at 2.89 MeV in c.m., the value of which is even larger than the resonance for the E1 

transition, since the additional contribution is given by the P5/2 resonance.  

The total cross section included all E1 and M1 transitions listed above is shown 

by the curve 4 in Figure 3.1 [47, p. 63]. 

In Figure 3.1 one can see that at energies above 400 keV the results of our calculation 

are much lower than the available experimental data [30, p. 56-58], and at energies less 

than 2 MeV they lie below the results obtained in [31, p. 238-239]. This difference in the 

cross sections can be due to two reasons: i. in our calculations, we considered 12 different 

electromagnetic transitions, but perhaps some additional relevant processes were not taken 

into account; ii. in Refs. [30, p. 56-58] and [31, p. 238-239] in the energy range from 0.4 

to 2 MeV the effect of capture on the FES is not entirely excluded. In addition, the 
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maximum of the calculated cross section in the 3 MeV region is lower than the data given 

by the reference [31, p. 238-239], which can be explained by the inaccuracy of the spectra 

[83, p. 16-18] known for the authors of [31, p. 238-239], but used by us today [82, p. 27-

29]. In both cases, the results of [30, p. 56-58] and [31, p. 238-239] require refinement on 

the basis of modern methods of experimental measurements [47, p. 63-64]. 

We note that the experimental error of the cross sections given in Figure 3.1 was 

taken to be 19%, as indicated by [30, p. 56-63] for an energy of 450 keV in l.s. or 270 

MeV in c.m. and the cross section 21(4) μb with an error of 15 keV for the center-of-

mass energy. The data given as a function of laboratory energy in [30, p. 56-58] were 

recalculated to the c.m. energy with integer particle masses.  

The data given as a function of the excitation energy in the research [31, p. 238-

243] were also recalculated to the c.m. energy with the binding energy of the 2H3He 

channel of 16.4 MeV, which is given by [31, p. 238-243]. The data from [27, p. 1023-

1029] are given for the c.m. energy of 0.27(3) MeV, at which the maximum values of 

the cross sections are observed in this work. The data from [28, p. 593-602] are given 

for an energy of 240 keV in the c.m [47, p. 64].  

 

3.1.2 Astrophysical S-factor 

The astrophysical S-factors that characterize the behavior of the total cross section 

of the nuclear reaction at an energy tending to zero are determined as follows [123] 

 

1 2
cm

cm

31.335
( , ) ( , ) exp ,f f

Z Z
S NJ J NJ J E

E

 
   

 
 

  

(3.1) 

 

where   is the total cross section of the radiative capture process in barn, Ecm is the 

particle energy usually measured in keV in the center-of-mass system,  is the reduced 

mass of the particles in the initial channel in amu, Z1 and Z2 are the charges of particles 

in units of elementary charge and N are the E or M transitions of the J-th multipolarity 

to a finite Jf state of the nucleus. The value of the numerical coefficient 31.335 is 

obtained on the basis of the modern values of the fundamental constants [124]. 

Now the results obtained for the astrophysical S-factor for d3He process are 

performed. Figure 3.2 displays the total astrophysical S-factor (the solid curve) for 

the transitions to the GS due to the E1 and M1 processes in direct correspondence 

with the cross sections shown in Figure 3.1 [47, p. 64].  

S-factor at the energy of 6-30 keV in c.m. is still relatively stable but equal to 

0.125(2) keV·b, which is still less comparing the experimental data reported in [30, p. 

56-58]. The error of the calculated S-factor shown here is obtained by averaging it 

over the indicated energy interval.  

The value of the calculated S-factor is 0.125 keV·b at the energy of 6 keV. At 

a maximum energy of 230 keV in c.m. the S-factor equals to 0.43 keV·b. If one uses 

for the 4S3/2 scattering wave the resonance potential (2.9) obtained on the basis of 

the characteristics of the first resonance level, instead of its parameters from Table 

2.2, it does not significantly change the magnitude and shape of the calculated S-

factor. 
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We recalculated data [30, p. 56-58] for the cross sections into S-factor and 

presented them as points in Figure 3.2. As we defined at minimal energies 100–200 

keV its value is near 0.39 keV·b. This value in the indicated energy range can be 

approximated by a trivial constant energy dependence S(E) = S0 with S0 = 0.386 

keV·b and a mean value for 2 = 0.21. Experimental 19% errors were assumed for 

the S-factor and the result is shown by the dashed curve 1 in Figure 3.2 [47, p. 64]. 
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Data are the same as in Figure 3.1a. Cyan band 5 – results from [34, p. R63-R64]. 

 

Figure 3.2a – S-factor data from [30, p. 56-58] and calculations with potentials 

from Tables 2 and bellow 1.0 MeV 

 

To improve the description of the experimental data we tried the following 

approximating function [80, p. 4] 

 

S(E in keV) = S0+ S1E+ S2E
2 

 

(3.2) 

 

but did not succeed at this very low energy region. 

In what follows we implement the parametrization of the calculated S-factor 

according to the expression (3.2) with 0   0.12133 00 keV·b,S E  

1    0.12718 04 b,S E   
-1

2   0.73463 05 b×keVS E   for the energy range up to 150 

keV in c.m. We found the value 2 to be 0.31 within 1% precision of the theoretical 

S-factor.  
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Data are the same as in Figure 3.1b. 

 

Figure 3.2b – Same as in Figure 3.2a, but at the energy bellow 5.0 MeV 

 

The result is shown by the dashed curve 2 in Figure 3.2 and is consistent with 

experimental data in the previously mentioned energy region [47, p. 65]. 

Experimental data shown by dots in Figure 3.2 can be approximated by the Breit-

Wigner type function 

 

2
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3 4
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(3.3) 

 

with the following parameters a1 = 0.11413, a2 = 7370.5, a3 = 189.78, a4 = 313.92 (the 

energy is given in keV in c.m.). The results of this parametrization is shown by the 

solid curve 3 in Figure 3.2, 2 is equal to 0.1 at 19% of experimental errors. At zero 

energy, this parametrization gives S(0) = 0.236 keV∙b [47, p. 66]. This form of 

parametrization at a resonance energy of 190 keV leads to a width of 314 keV, which 

almost coincides with the 3/2+ resonance parameters [82, p. 27-29]. 

We apply the ordinary 2 statistics as usually was done in [22, 23] and defined as 
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(3.4) 

 

Here Sc is the original, i.e. calculated and Sa is an approximate S-factor for the i-th 

energy, Sc is the error of the original S-factor, which was usually taken equal to 1%, 
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and N is the number of points in the summation in the expression. As the original S-

factor its experimental or calculated values shown in points or the solid curve 4 in 

Figure 3.2 were used, and the approximated S-factor is obtained on the basis of 

expressions (3.2) and (3.3) [47, p. 66]. 

We also use parametrization (3.2) for the calculation of the S-factor in the 

energy range up to 0.9 MeV c.m. and obtained the following parameters:

1    0.43449E 01,a    
2    0.41439E 04,a    

3    0.23046E 03,a    
4    0.20604E 03.a    

Figure 3.2 with curve 3 illustrates the quality of this procedure at 2 = 7.7 at 

1% error. At 6 keV in the c.m. or zero energy the value of the approximated S-factor 

(3.2) is 0.11 keV·b. The parametrization leads to a resonant energy of 230 keV at a 

width of 206 keV, which also in a good agreement with the data reported by [82, p. 

27-29, 47, p. 66].  

 

3.1.3 Screening effects 

The screening effects in plasma in laboratory as well as astrophysical conditions 

are discussed in detail in review [125]. Let us focus on the key points that can be 

applied to the reaction under consideration. The following relations for the cross 

sections and, accordingly, for the S-factors, are the generally accepted approximation 

for the estimation of electron screening [47, p. 66] 
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Figure 3.3 – The screening effects for the astrophysical S-factor of the 
3He(2H,γ)5Li capture 
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Here σs(E) is the electron-screened cross section; σb(E) is a cross bare nucleus; Ue 

is a constant electron screening potential energy. The Sommerfeld parameter is 

 
2

1 2 .
2 cm

Z Z c

c E


   

 

(3.6) 

 

The value of Ue can be calculated analytically (the adiabatic approximation), 

or determined experimentally [47, p. 66]. 

In our case, the 3He(2H, p)4He process is of interest, since it has a common initial 

channel with the reaction under consideration 3He(2H,γ)5Li. For this initial channel 

Ue = 120 eV is the adiabatic limit value [125, p. 101]. It should be noted that for 

different experimental conditions Ue has a different value. So in [89, p. 796-798] the 

direct measurements give the values Ue = 219±7 eV for 3He(2H, p)4He and Ue = 109±9 

eV for 2H(3He, p)4He. Thus, for the same reaction the difference is almost two fold.  

In a later experimental work [126], the screening effect turned out to be negligible. 

For some reason, the reference [126, p. 1-4] was not included in the review [125, p. 56-

100], in which the significance of electron screening for astrophysical plasma is 

discussed in terms of pycnonuclear ignition [47, p. 66-67]. 

Figure 3.3 illustrates the possible effect of electron screening for the process we 

are considering. The value of Sb corresponds to the blue curve in Figure 3.3, e.g. Ue = 0, 

and the minimum value for Ecm is 6 keV. It is clearly seen from Figure 3.3 that the 

screening effect strongly depends on the value of Ue, and it varies from 65 to 219 keV 

in different works [125, p. 99-102]. Obviously, until this value is determined quite 

accurately, it is also impossible to determine the impact of the screening effect. 

Therefore, it is not taken into account in calculating the reaction rate [47, p. 67]. 

 

3.1.4 Reaction rates 

The reaction rate in cm3mol-1s-1 units is usually defined as 

 

4 1/2 3/2

9 9

0

3.7313 10 ( ) exp( 11.605 / ) ,AN v T E E E T dE  


     (3.7) 

 

where the energy Е is taken in MeV, total cross section σ(E) in µb, the reduced mass µ 

in amu, and temperature Т9 in 109 K [127]. To calculate this integral 104 points of the 

theoretical cross section were taken in c.m. energy range from 6 keV to 10 MeV [47, 

p. 67]. 

In Figure 3.4 the solid curve shows the results of our calculations for reaction rate 

of the 3He(2H, γ)5Li capture on the GS at T9 from 0.003 to 10, which corresponds to the 

same curve in Figures 3.1 and 3.2. It should be borne in mind that the reaction rate was 

obtained from the calculated cross section, which slightly differs from the experimental 

cross section. 
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Theoretical curves obtained with potentials from Tables 1 and 3. An explanation of the 

parameterization functions is given in text. ● are the results from Ref. [87, p. 412-413] 

for the 
53 2He( H, ) Li  capture, ▲ are the results of [87, p. 412-413] for the 

3 2 5He H, ) e( H  capture. 

 

Figure 3.4 – Reaction rate of the 
53 2He( H, ) Li  radiative capture. 

 

The dots in Figure 3.4 display the results of [87, p. 412-413], which have a larger 

value of reaction rate. This is due to the strong decrease of our calculated total cross 

sections in the energy range 0.5 ± 1.0 MeV and insufficiently accurate description of 



70 

 

the cross sections at energies 1-6 MeV. This reaction rate is more than an order of 

magnitude higher than the rate of the 3He(2H, )5Li reaction considered here [47, p. 

67]. 

The calculated reaction rate shown on Figure 3.4 was approximated in the range 

0.03–10.0 Т9 as follows [35, p. 294-308] 
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 (3.8) 

 

The resulting curve is shown as dashed one in Figure 3.4, 2 is equal to 10. In the 

approximation, the calculated points shown in Figure 3.4 with a solid curve were used. 

To estimate the 2 the error was taken to be 1% [47, p. 68]. 

 

3.2 Alternative way of 6Li nuclei formation at the BBN 

Furthermore, we consider a possible scenario of thermonuclear astrophysical 

processes involving a short-lived 5Li isotope, which is formed as a result of the 
53 2He( H, ) Li  reaction. In any plasma, when a short-lived 5Li isotope is formed the 

probability of neutron capture followed by the formation of a stable 6Li is not zero [47, 

p. 68]. 

At first, such a chain of two reactions allows us to overcome the mass disruption 

at A = 5, leading to a stable nucleus with A = 6. Secondly, the reaction 5Li(n,)6Li leads 

to an additional 6Li formation channel, which can be considered for the explanation of 

the prevalence 6Li.  

We will describe below a possible and, as it seems to us, a new scenario for the 

synthesis of the 6Li isotope in astrophysical processes and, first of all, at the Big Bang. 

It is required to find out whether there is a "temperature window" that would allow 

such an amount of 6Li to be accumulated during the Big Bang, which could change the 

balance of 6-Li, including in the region of a sharp drop in the number of neutrons at     

T9 <1 [47, p. 68-69].  

The general dynamics of the synthesis of the light and lightest elements within the 

conditions of the standard Big Bang is represented by a graph of the participating 

particles fractions, shown in Figure 12 in work [128]. This graph is adapted here for 

our purposes and shown in Figure 3.5. It displays a sharp drop in the number of 

neutrons at T9 < 1, which turn out to be bound in heavier nuclei. The number of such 

nuclei, for example, 4He and 3He, increases strongly at lower temperatures, since the 

energy of the interaction becomes so small for their breakdown [47, p. 69]. 

We present below two reactions of radiative capture, which are usually considered 

as candidates for the role of the 6Li formation processes in the Big Bang and compare 

their rates with each other. It is believed that the radiative capture reaction 

 
4He + 2H → 6Li + γ  (3.9) 
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is one of the source of 6Li in the Big Bang, i.e., in the temperature range 50–400 keV 

[125, p. 99-102]. The relationship between temperature and energy is assumed to be 

1.0 T9 = 86.17 keV [47, p. 69]. 
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Figure 3.4 – Nuclei formation mass fractions in the Big Bang thermonuclear 

processes 

 

Therefore, the energy range from 50 up to 400 keV corresponds approximately to 

the temperature range 0.6–4.5 T9. A feature of this process is the forbiddance of the 

"strong" dipole E1 transition by the selection rules. So the reaction is due to the E2 

transition, excepting the lowest energies, where the E1 process makes an appreciable 

contribution to the overall picture. As a result, the cross section of reaction (3.9) is only 

a few nanobarns and sharply decreases with energy decreasing due to the Coulomb 

barrier. The specified parametrization of this reaction rate is given by Trezzi et al. [129] 
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 (3.10) 

 

This parametrization is used for comparison of the rates of radiative capture 

processes under consideration [47, p. 70]. There are no fundamental differences 

between (3.10) and similar parametrization from the survey [35, p. 294-308]. 

Theoretical and experimental aspects of the 6Li formation problem in the 
4He + 2H → 6Li + γ reaction (Lithium problem) are discussed in detail in one of the 

most recent publication [130]. The authors believe that despite all the efforts of 

accurate theoretical calculations, even when the tensor component of the 4He2H 

forces [131] is taken into account, it is possible to overcome the discrepancy with 

the experimentally established prevalence of 6Li/H ~ 1.7 10-14 only within ~20% 

[47, p. 70]. 

Therefore, as an additional source of 6Li formation in the Big Bang, the reaction 

[132] 

 
3He +3H → 6Li + γ. (3.11) 

 

was considered. However, we could not find the parametrization of the rate of such a 

reaction or its theoretical calculations. In order to calculate the rate of this reaction, we 

perform the parametrization of its total cross sections [47, p. 70]. We use polynomial 

form with the Breit-Wigner term 
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 (3.12) 

 

Basic experimental data were taken from [133, p. 1766]. Here we give 23 points 

for the total cross sections and we took one more point from [132, p. 4] at 81 keV in 

c.m. All experimental data are shown in Figure 3.5. The parametrization (3.12) with 

the parameters given in Table 3.1 leads to 2 = 0.4, and the corresponding result is 

shown in Figure 3.5 with the solid curve 1 [47, p. 70-71]. 

All parameters given in Table 3.1 are varied independently to obtain a minimum 

value of 2. From Table 3.1 we see that the power of b4 is 3/2, as is usually assumed in 

similar calculations [35, p. 294-308], the powers of b1, b2 and b5 are close to 2/3, and 

the power of b3 is approximately equal 2. But if we take powers, excepting the one of 

b4, to be equal to these integers, this leads to an increase in 2 of up to 1.4. Moreover, 

if we perform additional variation of the remaining parameters ai, then, despite the 

small value of 2 = 0.3, the approximated cross section becomes negative even at 

energies below 50 keV, which strongly affects the shape of the reaction rate. Therefore, 
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in order to calculate the reaction rate, we used the parametrization (3.12) with the 

parameters given in Table 3.1 [47, p. 71].  

 

Table 3.1 – The parameters of the expression (3.12) for parameterizing the data in 

Figure 3.5 

 

ai bi 

Coefficient Value Coefficient Value 

a1 - b1 0.63402E+00 

a2 0.92167E+03 b2 0.65888E+00 

a3 0.18011E+01 b3 0.22340E+01 

a4 0.64950E+01 b4 0.15001E+01 

a5 - b5 0.62889E+00 

a6 -   

a7 0.16969E+00   

a8 0.90199E+04   

a9 0.60666E+01   

 

This parametrization leads to negative cross sections at energies below 5 keV, 

therefore the calculation of the cross section is limited by this energy value. In Figure 

3.5, the dashed curve 2 shows the cross section obtained from the parameterization 

(3.12) and calculated in the energy range from 0.005 to 10 MeV, which is directly used 

later for calculations of the rate of reaction (3.11). 

Furthermore, another reaction can be considered. The following process can be 

estimated as an additional 6Li synthesis channel 

 

n + 5Li → 6Li + γ. (3.13) 

 

Obviously, a direct measurement of the cross section of this process is impossible. 

However, according to detailed balance, this cross section can be estimated from data 

for the photodisintegration reaction 6Li(,n)5Li with binding energy E51 = 5.67 MeV. 

The arguments in favor of the fact that the cross section of the reaction (3.13) can be 

significant is the absence of a Coulomb barrier, and also a centrifugal barrier, since a 

"strong" dipole E1 transition is realized from scattering S-waves [47, p. 71]. 

For further analytical calculations of the reaction (3.13) rate two variants of the 

cross section parameterization were obtained. In Figure 3.6a the solid curve shows the 

following version of the parameterization 

 

2
1 52 2

3 4

( )
( ) / 4

a
E a a E

E a a
   

 
 (3.14) 

 

with the parameters a1=
 -0.62090E-01, a2=

 0.10927E+03, a3=
 0.64065E+01, 

a4=
 0.79845E+01, a5=

 0.27650E+00 with 2 = 0.023. 
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The experimental data are as follows: [134] – , [133, p. 1766] – ▲, [132, p. 4] – ♦. 

For comparison, the results of [135] are given (■). Solid curves show different 

parameterizations (3.12). 

 

Figure 3.5 – Radiative 3H(3He,)6Li capture cross sections 

 

These parameters were obtained as a parametrization of the data of [135] 

taken from [136] and shown with the dots in Figure 3.6. However, this 

parameterization does not properly describe the behavior of the cross section at 

thermal energy. The cross section reaches a plateau with a value of 1.9 microbars 

for any, arbitrarily low energy [47, p. 71].  

Since the thermal cross section for this reaction was not measured by anyone, 

we can assume for it the value of 40 mb, as for 7Li [137]. The use of this data on 

thermal neutrons for 7Li is completely justified, because in the ground state this 

nucleus has the same quantum numbers Jπ = 3/2- as 5Li, while it is reasonable, for 

the first estimate, to assume that they have similar rms sizes. 

For a correct description of the thermal cross sections, it is required to change the 

form of the parametrization (3.14) as 

 

2
1 5 6 72 2

3 4

( ) / /
( ) / 4

a
E a a E a E a E

E a a
     

 
 (3.15) 

 

with parameters a1 = -0.62090E-01; a2 = 0.10823E+03; a3 = 0.63957E+01; 

a4 = 0.79517E+01; a5 = 0.27950E+00; a6 = -0.14339E-01; a7 = 0.10142E-02 and 

2 = 0.0216 [47, p. 71].  
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The experimental data from [135].  

  

Figure 3.6a – The cross section for the radiative 5Li(n,)6Li capture based on the 

data for 6Li(,n)5Li photodisintegration [135] without reference to thermal cross 

sections σth 

 

The green curve in Figure 3.6b is obtained from the parametrization (3.15), taking 

into account the reference to the thermal neutron capture cross section. Hence one can 

see that the parametrized cross section well conveys the results from [135] and 

describes the data at the thermal energy. However, one must bear in mind that at 

medium energies below the data given in [135], there is a "plateau", which is not 

characteristic of such cross sections [47, p. 72]. 

Furthermore, in Figure 3.7 one can see the reaction rates of some radiative capture 

processes which can lead to synthesis of 6Li or can be an intermediate stage for its 

synthesis. The solid curve 1 shows the results for the capture reaction rate of 
3H(3He,)6Li obtained on the basis of our the parameterization (3.12) [47, p. 72].  

Let us once again pay attention to the fact that such a parametrization leads to 

negative cross sections at energies below 5 keV. Therefore, the cross sections are cut 

off at this energy, which apparently leads to a more rapid decrease in the reaction rates 

at low temperatures. The solid curve 2’ shows the rate of the neutron capture on 5Li for 

the case of the parametrization (3.14), and the curve 2 – for the parameterization (3.15), 

which makes it possible to describe the cross sections at thermal energies. 
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The experimental data from [135].  

  

Figure 3.6b – The cross section for the radiative 5Li(n,)6Li capture based on 

the data for 6Li(,n)5Li photodisintegration [64, p. 193-197] with reference to σth for 
7Li 

 

It is easy to see an increase in the reaction rate at low temperatures if we take into 

account the thermal cross sections for the 5Li(n,)6Li capture. The curve 3 is the rate of 

the capture 4He(2H,)6Li reaction, obtained from the parametrization (9) of [129, p. 8]. 

The curve 4 shows our calculations of the rate of the 3He(2H,)5Li capture reaction, 

which can be parametrized with the expression (3.3) [47, p. 72]. 

As follows from Figure 3.7, the rate of the "priority" reaction 4He + 2H → 6Li + γ 

is less than all the others. Therefore, the question about the role of the 3He + 3H → 
6Li + γ process, as a possible candidate for amplifying the 6Li yield arose [47, p. 72-

73].  

The answer is contained in the comparison of the reaction rates presented in Figure 

3.7 and particles fractions in the process of BBN in Figure 3.4. Against the background 

of a large fraction of alpha particles, the deuterium fraction decreases with decreasing 

temperature. The synthesis of 3He is accelerated and to some extent compared with the 

amount of 2H, starting from Т9~1. In the same region, a maximum is observed for 

tritium 3H, the fraction of which, however, sharply decreases with time. As a result, the 

conclusions of [132, p. 5] on the minor contribution of this reaction in comparison with 

(3.9) are understandable [47, p. 73]. 
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Figure 3.7 – Different radiative capture reactions rates 

 

It follows from Figure 3.7 that the reaction rate of the 5Li synthesis (curve 4) with 

the participation of deuterium and 3He at Т91 is comparable and even greater than the 

process (3.9), and the deuterium fraction exceeds the tritium fraction by one order. In 

Figure 3.7 it is clearly shown that the rate of reaction 5Li(n,γ)6Li is greater than for 
3H(3He,γ)6Li and 3He(2H,γ)5Li, and even greater than for 4He(2H,γ)6Li reactions. 

Therefore, it can be assumed that in the Т91 region, which corresponds to a large 

neutron concentration, we can expect the real contribution of the reaction n + 5Li → 
6Li + γ to the 6Li synthesis [47, p. 73]. 

Now we give the parametrizations of 5Li(n,)6Li and 3H(3He,)6Li capture 

reactions rates. In the first case, it was possible to find only a polynomial form of the 

parametrization 
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i 1

A i

1

N

i

N v a E 



   (3.16) 

 

with the parameters from Table 3.2. This form at N = 7 leads to 2 = 3.0. Here and 

below, for calculations of 2, the error was assumed to be 1%. The results of the 

approximation are shown in Figure 3.7 with the dashed curve 2” [47, p. 73-74]. 

 

Table 3.2 – The parameters for expression (3.16) 

 

Coefficient Value Coefficient Value 

a1 100.2674 a5 -15.13806 

a2 717.7027 a6 1.2058 

a3 -296.7566 a7 -0.0374 

a4 93.84265   

 

To parameterize the rate of the second reaction, another form 

 
6 82 4

10 1612 14

1 9 3 9 5 9 7 9

9 9 11 9 13 9 15 9

/ exp( / )(1.0

) / exp( / )

a aa a

A

a aa a

N v a T a T a T a T

a T a T a T a T

     

   
 (3.17) 

 

was used which leads to 2 = 32.4. The results of the approximation are shown in 

Figure 3.7 with the dashed curve 1’ with parameters given in Table 3.3.  

As seen from Figure 3.7, the rate of the 3H(3He,)6Li capture reaction has an 

unusual form. Perhaps this is a consequence of the overestimated cross section obtained 

from the parametrization (3.12) in the low-energy region. Therefore, in expression 

(3.17), it is required to vary not only the coefficients of the T9 powers, but also the 

values of the powers themselves [47, p. 74]. 

Based on the obtained results, a more consistent evaluation of the role of the 

n + 5Li → 6Li + γ process in the BBN and in stars is desirable in the future. For this 

purpose, all necessary cross section parameterizations and reaction rates are obtained 

in this research. In addition, simple estimates based on the mass fraction distribution 

shows qualitatively that the role of the n + 5Li → 6Li + γ reaction requires a further 

study for astrophysical processes in conditions of high neutron concentration, which 

have a different temperature regime compared to the BBN [47, p. 74]. 

We present calculations for the total cross sections, astrophysical S-factor, and 

reaction rates for 3He(2H,γ)5Li radiative capture in the framework of the potential 

cluster model with forbidden states using a single channel approach. We show that the 

integral characteristics of 3He(2H,γ)5Li radiative capture can be reproduced with very 

high accuracy [47, p. 74].  

Our results are promising and pave the way for further microscopic analyses of 

this process. However, it is well known that the 3He(2H,p)4He and 3H(2H,n)4He) 

reactions are strongly dominant. We are well aware of the classical works within the 

method of resonating groups on the investigation of the α + N scattering channels 
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taking into account the coupled-channels for five-nucleon systems. This formalism 

found wide acceptance following its application to calculations of various polarization 

characteristics [138]. Indeed, there are indications of very subtle effects associated with 

channels coupling for polarization characteristics [47, p. 74].  

 

Table 3.3 – The parameters for expression (3.17) 

 

Coefficient Value Coefficient Value 

a1 74.07273 a9 907.838 

a2 1.8375 a10 3.00098 

a3 4.95476 a11  

a4 0.4065 a12 3.31375 

a5 2183.953 a13 11793.31 

a6  a14 2.28774 

a7  a15 2.48388 

a8 -1.56543 a16 0.53456 

 

Today the Gaussian expansion method to accurately solve the Schrödinger 

equations, which includes heavy calculations for bound, resonant and scattering states 

of three- to five-body systems (see review: [139] and references) is used for coupled-

channels calculations. Our calculations can be further improved by including additional 

α + N channels by performing coupled-channels calculations. The description of the 

five-nucleon system using the potential model within the Schrödinger equations with 

modern nucleon-nucleon potentials is a challenging issue and beyond the scope of the 

present research. 

One can see that the experimental data can be reproduced within a single-channel 

approach. In our opinion the coupled-channels calculations will not dramatically change 

the resulting pattern [47, p. 75]. 
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4 Astrophysical n10Be process at low energies 

In this the results obtained with the potentials from Section 2 for the total cross 

section, the astrophysical S-factor, the S-factor screening effects, and the rate of the 
3He(2H,γ)5Li radiative capture reaction.  

 

 

4.1 Processing of experimental data 

In the current section we present the formalities of the Coulomb dissociation data 

recalculation into the radiative capture total cross-sections, since we were faced with a 

problem of some differences in numerical results, caused by that different authors use 

the different initial data, for instance, the binding energy in the n10Be channel, 11Be 

Coulomb dissociation measuring results, etc [48, p. 92]. 

We considered the total cross-section of A(,n)B direct photodisintegration 

process, where B = A-1 expressed in terms of the reduced transition probability of 

Coulomb dissociation, can be written as 

 
316 ( 1)

.
9

n

dB E
E

c dE
 




     (4.1) 

 

Here the excitation energy is equal to E* ≡ E, Ecm = E – Eb, where Eb is the 

binding energy of a neutron, and the constant 2 /e c  = 0.007297 [140]. The neutron 

radiative capture cross-section is connected with the photodisintegration cross-section 

by the detailed equilibrium [106, p. 67-119] 
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J c E



   



  


  (4.2) 

 

where с2 is the reduces mass in MeV, which is equal to 853.590 MeV for the reaction 

under consideration at m(10Be) = 9327.546 MeV [141] and mn = 939.573 MeV, 

JA = 1/2, JA-1 = 0, Eb = 0.507 MeV [105, p. 4-10] or Eb = 0.504 MeV [104, p. 298-300, 

106, p. 67-119]. It is obvious, the binding energy value has a strong influence on Ecm 

particles energy at low energies, and in the different works the different values of this 

energy have been used [48, p. 92].  

In order to test the used by us calculation methods and computer programs we 

have considered 14C(n,)15C reaction detailed in [106, p. 67-119]. Figure 2.10 of [106, 

p. 67-119] illustrates the Coulomb dissociation probabilities data, and Figure 2.11 

shows the results of their recalculation into the total cross-sections of the neutron 

radiative capture on 10Be. We have digitized the data presented in Figure 2.10 and 

recalculated them into the total cross-sections. The results of present recalculation and 

data from Figure 2.11 [106, p. 67-119] are presented here in Figure 4.1. For this 

recalculation we used the mass m(14C) = 13043.936 MeV, and the neutron mass given 

above [48, p. 92].  

As we can see from Figure 4.1 the difference between the present results and data 

[106, p. 67-119] for the neutron capture on 14C total cross-sections is small enough and 
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caused by accuracy of digitization of data for the Coulomb dissociation probability 

from the figures presented in [106, p. 67-119]. 
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Figure 4.1 – Comparison of the 14C(n,)15C capture total cross-sections obtained by 

using the Coulomb dissociation data (▲, the present calculation) and results for these 

cross-sections (◌) presented in [106, p. 67-119] 

 

The following is the recalculation of data for 11Be Coulomb dissociation 

probability from [104, p. 298-300, 106, p. 67-119], presented in Figure 4.2, into 
10Be(n,)11Be radiative capture total cross-sections. This recalculation results are 

shown in Figure 4.3, but another ones for the Coulomb dissociation data [105, p. 9-10] 

provided by Professor T. Aumann are given in Table 4.1 [48, p. 93]. 

The similar recalculation of data for 10Be(n,)11Be reaction, provided by Professor 

T. Nakamura [106, p. 67-119], is presented in Table 4.2.  

In Figure 4.2 the energy 0.5 MeV is shown by the vertical red line. Red points 

illustrate the results [105, p. 9-10], blue squares correspond to data [104, p. 298-300], 

and green triangles show the results [106, p. 67-119]. One can see from Figure 4.2 that 

there is a great difference between the data [104, p. 298-300], [105, p. 9-10], and [106, 

p. 67-119]. Data [105, p. 9-10] are substantially less than results [104, p. 298-300, 106, 

p. 67-119], and this difference can reach 50%. 

In Figure 4.3 the black points show the recalculation results for data [104, p. 298-

300]. It seen they differ substantially from the present recalculation of the same data 

[104, p. 298-300], shown in Figure 4.3 by the blue squares [48, p. 92]. 
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Table 4.1 – The reduced probabilities of the Coulomb dissociation, the total cross-

sections of 11Be(,n)10Be photodisintegration and 10Be(n,)11Be radiative capture 

 

E dB/dE [dB/dE] En (,n) [(,n)]  (n,) [(n,)] 

0.52500E+00 0.13430E+00 0.23950E-01 0.19813E-01 0.28368E+03 0.50589E+02 0.50889E+01 0.90751E+00 

0.57500E+00 0.26770E+00 0.32620E-01 0.74850E-01 0.61931E+03 0.75464E+02 0.35276E+01 0.42985E+00 

0.62500E+00 0.41420E+00 0.41430E-01 0.12989E+00 0.10416E+04 0.10418E+03 0.40393E+01 0.40403E+00 

0.67500E+00 0.36680E+00 0.44020E-01 0.18492E+00 0.99615E+03 0.11955E+03 0.31650E+01 0.37983E+00 

0.72500E+00 0.45310E+00 0.49170E-01 0.23996E+00 0.13217E+04 0.14343E+03 0.37333E+01 0.40513E+00 

0.77500E+00 0.48750E+00 0.48250E-01 0.29500E+00 0.15201E+04 0.15045E+03 0.39910E+01 0.39501E+00 

0.82500E+00 0.57460E+00 0.50710E-01 0.35003E+00 0.19073E+04 0.16832E+03 0.47824E+01 0.42206E+00 

0.87500E+00 0.48410E+00 0.51430E-01 0.40507E+00 0.17043E+04 0.18106E+03 0.41539E+01 0.44130E+00 

0.95000E+00 0.59000E+00 0.37860E-01 0.48762E+00 0.22551E+04 0.14471E+03 0.53822E+01 0.34537E+00 

0.10500E+01 0.57530E+00 0.38790E-01 0.59770E+00 0.24304E+04 0.16387E+03 0.57810E+01 0.38979E+00 

0.11500E+01 0.53680E+00 0.41580E-01 0.70777E+00 0.24837E+04 0.19239E+03 0.59846E+01 0.46356E+00 

0.12500E+01 0.47300E+00 0.39440E-01 0.81784E+00 0.23788E+04 0.19835E+03 0.58606E+01 0.48867E+00 

0.13500E+01 0.40120E+00 0.38150E-01 0.92792E+00 0.21791E+04 0.20721E+03 0.55192E+01 0.52482E+00 

0.14500E+01 0.37890E+00 0.39470E-01 0.10380E+01 0.22105E+04 0.23026E+03 0.57738E+01 0.60145E+00 

0.16000E+01 0.32110E+00 0.29730E-01 0.12031E+01 0.20670E+04 0.19138E+03 0.56718E+01 0.52514E+00 

0.18000E+01 0.27860E+00 0.27970E-01 0.14232E+01 0.20176E+04 0.20256E+03 0.59230E+01 0.59464E+00 

0.20000E+01 0.25270E+00 0.28770E-01 0.16434E+01 0.20334E+04 0.23150E+03 0.63823E+01 0.72663E+00 

0.22000E+01 0.20650E+00 0.29800E-01 0.18635E+01 0.18278E+04 0.26377E+03 0.61217E+01 0.88342E+00 

0.24000E+01 0.17000E+00 0.29390E-01 0.20837E+01 0.16415E+04 0.28379E+03 0.58516E+01 0.10116E+01 

0.26000E+01 0.14130E+00 0.25010E-01 0.23038E+01 0.14781E+04 0.26162E+03 0.55929E+01 0.98993E+00 

0.28000E+01 0.10960E+00 0.27320E-01 0.25240E+01 0.12347E+04 0.30777E+03 0.49456E+01 0.12328E+01 

0.30000E+01 0.12030E+00 0.26590E-01 0.27441E+01 0.14520E+04 0.32094E+03 0.61411E+01 0.13574E+01 

0.32000E+01 0.65070E-01 0.26880E-01 0.29643E+01 0.83776E+03 0.34607E+03 0.37319E+01 0.15416E+01 

0.34000E+01 0.95910E-01 0.26130E-01 0.31844E+01 0.13120E+04 0.35744E+03 0.61418E+01 0.16733E+01 

0.36000E+01 0.30730E-01 0.28190E-01 0.34046E+01 0.44510E+03 0.40831E+03 0.21849E+01 0.20043E+01 

0.38000E+01 0.34140E-01 0.23230E-01 0.36247E+01 0.52196E+03 0.35516E+03 0.26814E+01 0.18245E+01 

0.40000E+01 0.45360E-01 0.23380E-01 0.38449E+01 0.73000E+03 0.37627E+03 0.39174E+01 0.20191E+01 

0.42000E+01 0.52790E-01 0.24560E-01 0.40650E+01 0.89205E+03 0.41502E+03 0.49918E+01 0.23224E+01 

0.44000E+01 0.64780E-01 0.22730E-01 0.42851E+01 0.11468E+04 0.40239E+03 0.66812E+01 0.23443E+01 

0.46000E+01 0.12210E-01 0.23220E-01 0.45053E+01 0.22598E+03 0.42974E+03 0.13686E+01 0.26028E+01 

0.48000E+01 -0.99970E-02 0.20930E-01 0.47254E+01 -0.19306E+03 0.40420E+03 -0.12139E+01 0.25414E+01 

0.50000E+01 0.25010E-01 0.21770E-01 0.49456E+01 0.50312E+03 0.43794E+03 0.32797E+01 0.28548E+01 

0.52000E+01 0.15750E-01 0.18990E-01 0.51657E+01 0.32951E+03 0.39730E+03 0.22242E+01 0.26818E+01 
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Experimental data: ■ are from [104, p. 298-300], ● from [105, p. 9], and ▲ from [106, 

p. 67-119]. 

 

Figure 4.2 – The Coulomb dissociation probabilities  
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Data: ■ from [104, p. 298-300], ● from [105, p. 4-10], and ▲ from [106, p. 67-119]. 

● show the recalculation results for data [104, p. 298-300]. 

 

Figure 4.3 – The obtained by us 10Be(n,)11Be radiative capture total cross-sections 

based on the Coulomb dissociation probability  
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Table 4.2 – The reduced probabilities of the Coulomb dissociation, the total cross-

sections of 11Be(,n)10Be photodisintegration and 10Be(n,)11Be radiative capture 

  
E dB/dE [dB/dE] En (,n) [(,n)]  (n,) [(n,)] 

0.55400E+00 0.23220E+00 0.88112E-02 0.55037E-01 0.51755E+03 0.19640E+02 0.37218E+01 0.14123E+00 

0.65400E+00 0.68446E+00 0.16999E-01 0.16511E+00 0.18010E+04 0.44728E+02 0.60163E+01 0.14942E+00 

0.75400E+00 0.82996E+00 0.21356E-01 0.27518E+00 0.25178E+04 0.64787E+02 0.67077E+01 0.17260E+00 

0.85400E+00 0.82182E+00 0.23971E-01 0.38526E+00 0.28238E+04 0.82363E+02 0.68933E+01 0.20106E+00 

0.95400E+00 0.81894E+00 0.26301E-01 0.49533E+00 0.31433E+04 0.10095E+03 0.74478E+01 0.23919E+00 

0.10540E+01 0.72331E+00 0.28438E-01 0.60540E+00 0.30673E+04 0.12060E+03 0.72581E+01 0.28537E+00 

0.11540E+01 0.69900E+00 0.30684E-01 0.71548E+00 0.32454E+04 0.14247E+03 0.77897E+01 0.34195E+00 

0.12540E+01 0.57986E+00 0.32868E-01 0.82555E+00 0.29256E+04 0.16583E+03 0.71861E+01 0.40733E+00 

0.13540E+01 0.54881E+00 0.34808E-01 0.93562E+00 0.29897E+04 0.18962E+03 0.75543E+01 0.47914E+00 

0.14540E+01 0.45194E+00 0.37923E-01 0.10457E+01 0.26438E+04 0.22185E+03 0.68927E+01 0.57838E+00 

0.15540E+01 0.45915E+00 0.41971E-01 0.11558E+01 0.28708E+04 0.26242E+03 0.77350E+01 0.70705E+00 

0.16540E+01 0.38684E+00 0.46088E-01 0.12658E+01 0.25743E+04 0.30670E+03 0.71743E+01 0.85475E+00 

0.17540E+01 0.36575E+00 0.51044E-01 0.13759E+01 0.25811E+04 0.36022E+03 0.74422E+01 0.10386E+01 

0.18540E+01 0.42178E+00 0.54085E-01 0.14860E+01 0.31462E+04 0.40344E+03 0.93847E+01 0.12034E+01 

0.19540E+01 0.30008E+00 0.59193E-01 0.15961E+01 0.23591E+04 0.46536E+03 0.72775E+01 0.14356E+01 

0.20540E+01 0.29910E+00 0.64603E-01 0.17061E+01 0.24718E+04 0.53388E+03 0.78819E+01 0.17024E+01 

0.21540E+01 0.32079E+00 0.72091E-01 0.18162E+01 0.27801E+04 0.62476E+03 0.91584E+01 0.20581E+01 

0.22540E+01 0.20229E+00 0.76464E-01 0.19263E+01 0.18345E+04 0.69343E+03 0.62392E+01 0.23584E+01 

0.23540E+01 0.27806E+00 0.84503E-01 0.20364E+01 0.26335E+04 0.80033E+03 0.92412E+01 0.28084E+01 

0.24540E+01 0.11028E+00 0.83553E-01 0.21464E+01 0.10889E+04 0.82495E+03 0.39395E+01 0.29846E+01 

0.26040E+01 0.42889E-01 0.67467E-01 0.23115E+01 0.44935E+03 0.70685E+03 0.16998E+01 0.26739E+01 

0.28040E+01 0.39987E-01 0.71057E-01 0.25317E+01 0.45111E+03 0.80163E+03 0.18066E+01 0.32103E+01 

0.30040E+01 -0.56019E-01 0.78597E-01 0.27518E+01 -

0.67706E+03 
0.94994E+03 -

0.28631E+01 
0.40171E+01 

0.32040E+01 -0.64728E-01 0.87340E-01 0.29720E+01 -

0.83441E+03 
0.11259E+04 -

0.37166E+01 
0.50150E+01 

0.34040E+01 0.98931E-01 0.99400E-01 0.31921E+01 0.13549E+04 0.13613E+04 0.63423E+01 0.63723E+01 

0.36540E+01 -0.21345E-01 0.10489E+00 0.34673E+01 -

0.31380E+03 
0.15420E+04 -

0.15582E+01 
0.76568E+01 

0.39540E+01 0.18232E+00 0.11905E+00 0.37975E+01 0.29005E+04 0.18939E+04 0.15398E+02 0.10055E+02 

0.42540E+01 0.20553E+00 0.14036E+00 0.41277E+01 0.35177E+04 0.24023E+04 0.19887E+02 0.13581E+02 

 

4.2 Classification for the E1 transition capture 

On the basis of the data given above in Section 2 it can be assumed that the E1 

capture of a neutron is allowed from 2P scattering waves without the bound FSs or ASs 

to the 2S1/2 GS of 11Be with the bound FSs or ASs. 
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  (4.3) 

 

For the radiative capture to the FES the analogous E1 transition from 2S1/2 and 
2D3/2 scattering waves with the bound FSs, but without bound ASs to 2P1/2 BS with the 

bound AS, but without bound FS, is allowed [48, p. 96]. 
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The potentials of the GS and FES are constructed so that to describe correctly 

the channel binding energy, 11Be charge radius and its asymptotic constant Сw in the 

n10Be channel [48, p. 97].  

Data for the asymptotic normalizing coefficients ANC are given, for example, 

in [37, p. 108]. In further calculations we have used 10Be GS radius equal to 

2.357(18) fm from [141], and 11Be GS radius value given in [110, p. 99] is equal to 

2.463(15) fm. The charge radius of the neutron is equal to zero and its mass radius 

equal to 0.8775(51) fm agrees with the known radius of a proton [140].  

Furthermore, the estimated value of the charge radius of 11Be FES presented in 

[35, p. 283-294] is equal to 2.43(10) fm, and the value of 11Be GS obtained in the same 

work is equal to 2.42(10) fm [48, p. 97].  

The value of radius of the neutron in 11Be, given in [142], is equal to 5.6(6) fm. 

At the same time the value of the neutron radius in the GS, presented in [143], is equal 

to 7.60(25) fm, and another one for the FES, given in the same work, is equal to 

4.58(25) fm. In all further calculations we have used the exact values of 10Be and 

neutron masses: m(10Be) = 10.01134 аmu [141], and mn = 1.008665 amu [140, 141]. 

 

4.3 Calculation of the n10Be reaction characteristics 

Now let us discuss the results for the total cross-sections and this reaction rate of 

the neutron radiative capture on 10Be. These characteristics were obtained on the basis 

of the described in Subsection 2 nuclear model using the potentials given above. 

 

4.3.1 10Be(n,)11Be reaction total cross section 

As it was already mentioned we assume that the radiative E1 capture (4.3) occurs 

from the 2P scattering waves to the 2S1/2 GS of 11Be in the n10Be channel. The present 

calculation of such capture cross-sections for the GS potential (2.20) leads to the results 

shown in Figure 4.4 by the blue solid line. In all these calculations for 2P1/2 elastic 

scattering potentials we used the potential of zero width, and for 2P3/2 scattering 

potentials the potential with parameters (2.22) was used [48, p. 98].  

The experimental data for the neutron radiative capture on 10Be, shown in Figure 

4.4, were recalculated by us from [104, p. 298-300, 106, p. 67-119]. As it can be seen 

from these results the calculated cross-sections on the whole describe the recalculated 

by us experimental data [104, p. 298-300, 106, p. 67-119] in the considered energy 

region. Seemingly, they are in the best agreement with the results [106, p. 67-119] and 

do not practically exceed the limits of available experimental varieties of this research.  

The results of other works and our previous results of calculation are given 

below for comparison. Particularly, the blue dashed line in Figure 4.4 shows the 

results from [103, p. 326c], the black dashed-dotted line is the result [36, p. 1546]. 

The green dashed line present results from [122, p. 10], and here one should keep 

in mind that these results have been obtained with zero potentials for both P waves, 

i.e. the resonance in 2P3/2 scattering wave was not taken into account [48, p. 98-99].  
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The black solid line shows the present calculation results obtained by using the 

potentials from [122, p. 10] while the ME integrating up to 150 fm. These results in 

contrast to another one obtained in [122, p. 10] reproduce well data [103, p. 326c] at 

all energies [48, p. 99]. 

As it can be seen from Figure 4.4 the calculated cross-section (the blue solid line) is 

decreased slowly at the energies of the order of 10 keV and less, that does not enable to 

describe its value at the thermal energy equal to 290(90) µb, presented in [36, p. 1546]. 

Therefore, let us consider further the E1 transitions from 2S1/2 and 2D3/2 scattering waves 

to 2P1/2 FES, which were given above as transition (4.4).  

The blue dashed line in Figure 4.5 presents the results for the E1 transition (4.3) to 

the GS with potentials (2.20), (2.22), and zero potential of 2P1/2 scattering, these results 

were shown in Figure 4.4 by the blue solid line. The black dotted line corresponds to E1 

transition (4.4) from 2S1/2 and 2D3/2 scattering waves with potential (2.20) and the moment 

L equal to 0 and 2 to 2P1/2 FES with potential (2.23) [48, p. 99].  

The blue solid line shows the total cross-section of these two E1 processes and on 

the whole correctly reproduces the general trend of available experimental data in the 

whole energy region under consideration from the thermal energy equal to 25.3 meV to 

the energy about 5.0 MeV. The calculated cross-section at the thermal energy takes on a 

value equal to 302 µb [48, p. 99]. 

The cross-section of the allowed M1 transition from the 2S1/2 scattering wave to 

the 2S1/2 GS of 11Be in the n10Be channel with the same potential (2.20) in both states 

will tend to zero due to orthogonality of the discrete and continuous spectra wave 

functions in one potential. The real numerical calculation of such cross-sections leads 

to the value that is less than 10-2 µb in the energy region from 1 keV to 3.0 MeV. At 

the energy equal to 25.3 meV such cross-section is less than 1% from the cross-section 

of transition to the FES, shown in Figure 4.5 by the black dotted line [48, p. 99].  

If we consider further M1 transitions from 2P scattering waves with zero potential 

for the 2P1/2 wave and potential (2.22) for the 2P3/2 waves to the 2P1/2 FES with potential 

(2.23), then the cross-sections do not exceed the value equal to 0.15 µb in all energy 

ranges. For the E2 transitions from the 2D3/2 wave with potential (2.20) at L = 2 and the 
2D5/2 wave with potential (2.21) to the GS with 2S1/2 the cross-sections value does not 

exceed 10-3 µb even at the resonance energies. It can be seen from these results that 

such transitions do not make noticeable contribution to the total cross-sections of the 

process under consideration [48, p. 99]. 

Figure 4.5 demonstrates the difference between the total cross-sections at the 

thermal energy, in [36, p. 1546] the value 290(90) µb was obtained, and in [144, p. 1-

19] the upper value is equal to 1 mb, i.e. three times more, was given. Therefore, other 

potential of the FES may be proposed, for example, with the following parameters 

 

VP1/2 = 42.112565 MeV and 1/2 = 0.15 fm-2. (4.5) 
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● correspond to data from [103, p. 326c], based on the results [104, p. 298-300]; ● 

show the present recalculation of data [105, p. 4-10]; ▲ show the recalculation of data 

[106, p. 67-119], ■ are the present recalculation of data [104, p. 298-300]. The blue 

dashed line shows the results [103, p. 326c]; the black dotted-dashed line is the result 

from [36, p. 1546]; the green dashed line shows results from [122, p. 10]; the black 

solid line shows the results of present calculation with potentials from [122, p. 10]; the 

blue solid line shows the results of present calculations with potentials (2.20), (2.22), 

and zero potential of the 2P1/2 scattering. 

 

Figure 4.4 – The total cross-sections of 10Be(n,)11Be radiative E1 capture to the GS 

 

The potential (4.5) leads to the binding energy equal to -0.181560 MeV at the 

FDM accuracy equal to 10-6 MeV, the AC is equal to 0.40(1) in the range of 7–30 fm, 

the mass radius is equal to 2.90 fm, and the charge radius is equal to 2.43 fm. Such 

potential phase shift is shown in Figure 2.5 by the blue dotted-dashed line, and the AC 

value is in the range of possible values from 0.29 to 0.81 [48, p. 99].  

The total cross-sections with such potential are shown in Figure 4.5 by the red 

dotted line, and at the thermal energy it leads to the cross-sections equal to 809 µb. 

Thus, it is seen that significant ambiguity of the thermal cross-sections and wide range 

of the AC possible values do not enable to fix uniquely the FES potential parameters. 

Since, at the energies from 25.3 meV to about 10 eV the calculated cross-section 

is the straight line (the blue solid line in Figure 4.5), it can be approximated by the 

function of energy of the following form 

 

ap( b) .
(keV)

A

E
    (4.6) 
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The constant value A = 1.5218 bkeV1/2 was determined by one point in the 

calculated cross-sections at the minimum energy equal to 25.3 meV. The modulus of 

relative deviation  

 

ap theor theor( ) [ ( ) ( )] / ( )M E E E E     (4.7) 

 

of the calculated theoretical cross-section (theor) and approximation (ap) of this cross-

section by the function (4.6) given above in the energy region up to 10 eV is at the 

level of 0.2% [48, p. 99-100].  

It is quite real to assume that this form of the total cross-section dependence on 

the energy will be the same also at lower energies. Therefore, on the basis of the given 

expression for cross-section (4.6) approximation one can evaluate the cross-section at 

the energy equal, for example, to 1 eV (1 eV = 10–6 eV = 10–9 keV) that gives the 

value of the order of 48.1 mb. 
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● are data from [103, p. 326c] based on results [104, p. 298-300], ● correspond to the 

recalculation of data from [105, p. 4-10], ▲ show the recalculation of data [106, p. 67-

119], ■ correspond to the present recalculation of data [104, p. 298-300], ▲ is our 

recalculation of data [36, p. 1546], and ■ is the present recalculation of data [144, p. 1-

19]. The blue solid line is the present calculation; the black dotted line shows the cross-

sections of the transition to the first excited state (the present calculation); the red 

dotted line shows the present calculation with potential (4.5); the blue dashed line 

shows the present calculations with potentials (2.20), (2.22), and zero potential of the 
2P1/2 scattering [48, p. 100]. 

 

Figure 4.5 – The total cross-sections of the 10Be(n,)11Be radiative capture 
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4.3.2 10Be(n,)11Be reaction rate 

Next in Figure 4.6 the reaction rate NA˂v˃ of the neutron radiative capture on 
10Be (the red solid line) in the region 0.01–10.0 T9 is shown. It corresponds to the blue 

solid line in Figure 4.5 and is presented in the usual form [67, p. 6] 

 

4 1/2 3/2

9 9

0

3.7313 10 ( ) exp( 11.605 / ) ,AN v T E E E T dE



        (4.8) 

 

where E is given in MeV, the cross-section σ(E) is measured in µb, µ is the reduced 

mass in amu, Т9 is the temperature in 109 К [48, p. 100].  

To calculate this rate, the total cross-section shown in Figure 4.5 was computed 

in the region from 10.0 meV to 10.0 MeV. The blue doted-dashed line in Figure 

4.6 shows the reaction rate of capture to the GS, and the red dotted-dashed line does 

the rate of capture to the FES [48, p. 100]. 

The black solid line presents the results of approximation of the calculated rate of 

the reaction under consideration from [36, p. 1546]. This curve is appreciably higher 

than the present results at the temperatures less than 1.0 Т9. It is explained by using in 

[36, p. 1546] the cross-sections agreed with data [103, p. 326c].  

Next in Figure 4.6 the green solid line shows the results of the reaction rate from 

[145] which were also agreed with the results for the cross-sections from [103, p. 326c]. 

The reaction rate from [41, p. 511] is shown by the blue solid line, and it has absolutely 

different form and is in the worst agreement with all results given above. 

The red solid line in Figure 4.6 in the region 0.01–10.0 T9 can be approximated 

by the expression of the form 

 
6

1

9

1

k

A k

k

N v a T 



   (4.9) 

 

with parameters from Table 4.3. 

The results of approximation with such parameters are shown in Figure 4.6 by the 

blue dashed line at the average value 2 = 0.4 and 1% varieties of the theoretical 

reaction rate. Also another form of approximation of the calculated reaction rate [146] 

can be used 

 
2/3 1/3 1/3

9 9 9

2/3 4/3 5/3

9 9 9 9

5.9688 / exp( 0.34181/ ) (1.0 0.01441

55.30271 287.1127 883.6600 227.0900 )

AN v T T T

T T T T

       

       
 (4.10) 

 

with Т9 = 109 K, that also leads to 2 = 0.3 at 1% varieties of the calculated reaction 

rate. The results of such approximation are shown in Figure 4.6 by the green dotted 

line [48, p. 100]. 
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The blue dotted-dashed line is the reaction rate for capture to the ground state (present 

calculation); the red dotted-dashed line is the reaction rate for capture to the first 

excited state (present calculation); the red solid line shows the total reaction rate 

(present calculation); the blue dashed line shows the approximation of the calculated 

reaction rate at 2 = 0,4 (4.9); the green dotted line shows the approximation of the 

calculated reaction rate at 2 = 0,3 (4.10); the green solid line shows the results from 

[145, p. 323-326]; the blue solid line shows the results from [41, p. 511]; the black 

solid line shows the results of approximation of the calculated reaction rate from [36, 

p. 1546]. 

 

Figure 4.6 – The reaction rate of the neutron capture on 10Be 

 

Table 4.3 – Extrapolation parameters from Expression (4.9) 

 

k 1 2 3 4 5 6 

ak 44.23061 2271.351 -580.9702 105.1334 -9.97608 0.36633 

 

 Thus, in the framework of the MPCM with the classification of states according 

to the Young diagrams we quite succeeded in constructing the potentials of n10Be 

interaction, which enables on the whole to reproduce correctly the general trend of 

available experimental data for the total cross-sections of the neutron radiative capture 

on 10Be at low and ultralow energies. The theoretical cross-sections have been 

calculated from the thermal energy 10.0 meV up to 10.0 MeV and approximated by the 

function of energy (4.6) which can be used for calculation of the cross-sections at 

energies less than 10 eV. The reaction rate has been calculated, and two forms of its 
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approximation have been presented at temperatures from 0.01 to 10.0 Т9 with small 

value of 2 [48, p. 100].  

The results of calculation are in quite good agreement with the present 

determinations of the radiative capture total cross-sections from data [104, p. 298-300, 

106, p. 67-119] for 11Be Coulomb dissociation probability. On the basis of the results 

obtained above we recommend form (4.10) for the reaction rate approximation shown 

in Figure 4.6, which is seemingly the best for such rate description at the minimal 2 

[48, p. 100]. 

 

  



92 

 

CONCLUSION 

The practical development of the scattering phase shift formalism for the high-

spin nuclear processes is presented and examples of its application for the relevant 

astrophysical processes are threated.  

While the lack of experimental data on the elastic scattering differential cross 

sections, we involved the MPCM, that allows to obtain scattering phase shifts 

indirectly. The MPCM  is based on experimental data: binding energy 
bE  for discreet 

spectra and excitation energy 
cmE , level widths  , quantum characteristics J , and 

ANC. 

Based on the phase shifts obtained, the binary interaction potentials within the 

cluster model approach were constructed and the total cross sections, astrophysical S-

factor and reaction rates for the radiative capture reactions 3 2 5He( H, ) Li  and 

 
1110 Be , Ben  were calculated.  

As a result of the research, the following conclusions were formulated. 

1. The analytical expressions obtained for the differential cross sections for elastic 

scattering can be applied for channels with an integer ( 1, 2)S   and half-integer 

( 3 / 2, 5 / 2)S   spin value. The total differential cross sections are expressed in terms 

of the corresponding independent partial amplitudes for each channel spin. These 

expressions are presented for arbitrary orbital angular momentum  and taking into 

account spin-orbit splitting. It should be noted that due to this, these expressions can 

be used for any arbitrary number of partial waves .  

Obviously, as the channel spin value and the number of waves  increase, the 

complexity of the problem to be solved increases as well. For example, for the 

description of the half-integer doublet 1/ 2S   channel spin state only 2 independent 

partial amplitudes 1/2
'D 

  are required, while for the quartet state with the channel spin 

3 / 2S   number of independent amplitudes 3/2
'Q 

  equals 8. There are 18 

independent partial amplitudes 5/2
'S 

  for the sextet state with the channel spin S = 

5/2. To describe the triplet state with the channel spin 1S  , 5 independent amplitudes 
1

'T 
  are required. To describe the quintet with 2S  , the number of independent 

amplitudes 2
'Q 

  increases to 13.  

Obviously, with an increase of the channel spin, the number of required 

independent amplitudes for a correct description of scattering processes increases. For 

low energy processes, whose description requires a small number of partial waves, 

general expressions for the partial amplitudes can be reduced to simple algebraic 

expressions.  

The obtained expressions for the differential cross sections in the terms of 

independent partial amplitudes enable phase shift analyses for different integer and 

half-integer channel spins and allow one to find corresponding phase shifts using 

experimental data for a nucleon-nucleus and nuclear-nuclear reaction cross sections.  
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Formula (1.18) for the differential cross section has a universal form and can be 

applied to any processes of elastic scattering, regardless of whether the channel spins 

are integer or half-integer.  

2. Comparatively simple single-cannel model representations (namely, the use of 

MPCM in this work) succeeded to obtain the theoretical results in general agreement 

with the available experimental data for the S-factor or total cross section of the 

radiative 3He(2H,)5Li capture. This model is much simpler than the known RGM and 

its modifications, but in many cases it allows one to obtain quite reliable numerical 

results for many reactions such as radiative capture.  

It should be noted, that in order to make a detailed phase shift analysis the 

measurements of differential cross sections in the energy region of interest in steps of 

0.3–0.5 MeV is required. In order to properly depict the phase shift resonance, it is 

necessary to have a step of measuring cross sections in the resonance region of not less 

than /5. In other words, within the width of the resonance there must be at least five 

points of the cross sections measurement. Only in this case the resonance form of the 

phase shift appears quite accurately. 

From the point of view of further application of the results obtained here in 

astrophysical problems, we can indicate the following: 

 Analytical parametrizations of the considered radiative 5Li(n,)6Li and 
3H(3He,)6Li capture reactions cross sections and their rates are obtained. 

 The rates of these two processes and the rate of the 3He(2H,)5Li capture 

reaction considered here are compared. 

 The possible contribution of the neutron capture on 5Li to the formation of a 

stable 6Li is considered. 

 It has been shown qualitatively that the neutron capture on 5Li formed at 
3He(2H,)5Li capture in the temperature range of the order of 1.0Т9 at the BBN, can 

make a significant contribution to the processes of primary accumulation of a stable 
6Li. 

In this research piece we make the assumption related to the existence of the two 

step mechanism 3He(2H,γ)5Li → 5Li (n,γ)6Li in formation of 6Li as one of the options 

to address the lithium abundance within the BBN model. The role of short-lived 

isotopes in astrophysical thermonuclear processes is quickly becoming a popular 

subject of experimental and theoretical research, so in this pioneering work, we tried 

to identify some problematic aspects of these calculations regarding the lack of 

information in the literature for the considered processes.  

In addition, a role of two-step processes, which are extremely difficult to study in 

laboratory conditions, but which, nevertheless, occur in natural plasma, requires 

clarification. These processes either make a certain contribution to the scenario of 

stellar plasma evolution as a whole, or their role should be considered insignificant. 

This question is open, and we have demonstrated one of ways to address its solution 

[47, p. 75].  

On the basis of all results obtained here it is clear that now it is required to make 

quantitative calculations of the contribution of such reactions to the accumulation of 

the 6Li nucleus at BBN in stars and other astrophysical processes. 
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3. In the framework of MPCM, experimental data are reproduced properly for the 

process of radiative capture of neutrons on a 10Be nucleus in the energy range from 

25.3 meV to 10.0 MeV. This should be considered as evidence of reliability and 

justification of the quasiqualitative models, such as MPCM, applications. Sometimes 

the necessary experimental data on scattering cross sections required for a sequential 

phase shift analysis are not available. For the constructing of the interaction potentials 

in these cases MPCM, that relies on experimental data on ANC, the position and width 

of the corresponding resonances in the continuous spectrum, and binding energies, is 

applicable. 

In the framework of MPCM the potentials of n10Be interaction were constructed. 

These potentials reproduce correctly the general trend of experimental data for the total 

cross-sections of the neutron radiative capture on 10Be nucleus at low and ultralow 

energies.  

The theoretical cross-sections have been calculated from the thermal energy 10.0 

meV up to 10.0 MeV and approximated by the simple function of energy (4.6) which 

can be used for calculation of the cross-sections at energies less than 10 eV. The 

reaction rate has been calculated, and two forms of its approximation have been 

presented at temperatures from 0.01 to 10.0 Т9 with small value of 2 [48, p. 100]. 

The scattering phase shifts obtained within the framework of the calculated in 

Subsection 2.3.2 interaction potentials are presented in the Figure 2.5. MPCM 

application for the radiative neutron capture reaction  
1110 Be , Ben   was so successful 

that the phase shifts obtained may be regarded as a benchmark for future consistent 

phase shift analysis, further reconstruction and refinement of interaction potentials, 

programs debugging. 
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APPENDIX A 

Spin-mixing M−matrix elements 

 

Spin-mixing M−matrix elements, integer spin channel values S = 1 and S = 2: 

 

 

 

(A.1) 
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Spin-mixing M−matrix elements for half-integer channel spin S = 1/2 and S = 3/2: 

 

 

(A.15) 

 
 

(A.16) 
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APPENDIX B 

Computing test program for the phase shift analysis for the pd-system  

 

 This program is based on the formalism, presented in Section 1. It is developed 

on the basis of the works and research of S.B. Dubovichenko, Head of the Laboratory 

of Nuclear Astrophysics of the Fessenkov Astrophysical Institute, and in collaboration 

with him. A similar code is presented, for example, in his monograph [147]. 

 
PROGRAM FAZ_AN_N2H 

IMPLICIT REAL(8) (A-Z) 

INTEGER I,L,LMA,NI,NV,NT,NP,NPP,K,J 

CHARACTER(34) AA,BB 

CHARACTER(15) CC 

COMMON /A1/ 

SE(0:100),DS(0:100),DE(0:100),DS1(0:100),ST(0:100),TT(0:100),CULKV(0:100),NT

,NP,LMA 

COMMON /A2/ GG,SS 

COMMON /A5/ PI 

COMMON /BB/ NPP 

DIMENSION XP(0:100) 

COMMON FP12D(0:50),FM12D(0:50),  FP32Q(0:50),FM32Q(0:50),  

FP12Q(0:50),FM12Q(0:50) 

!  *************** INITIAL VALUES ************************************ 

PI=4.0D0*DATAN(1.0D0) 

Z1=1.0D0 

Z2=1.0D0 

AM1=1.0D0 ! N 

AM2=2.0D0 ! 2H 

G=AM1/AM2 

AM=AM1+AM2 

A1=41.46860D0 

!A1=41.80158990D0 

PM=AM1*AM2/AM 

B1=2.0D0*PM/A1 

!*********************************************************************** 

!AA="400.dat"; NT=20; BB="p2H-400.DAT"; EP=0.400D0; ECM=AM2/AM*EP; LMA=3; 

CC="FAZ-400.DAT"  

!AA="647.dat"; NT=19; BB="p2H-647.DAT"; EP=0.647D0; ECM=AM2/AM*EP; LMA=2; 

CC="FAZ-647.DAT"  

AA="1000.dat"; NT=56; BB="p2H-1000.DAT"; EP=1.0D0; ECM=AM2/AM*EP; LMA=2; 

CC="FAZ-1000.DAT" 

!AA="2000.dat"; NT=32; BB="p2H-2000.DAT"; EP=2.0D0; ECM=AM2/AM*EP; LMA=10; 

CC="FAZ-2000.DAT" 

!AA="3000.dat"; NT=36; BB="p2H-3000.DAT"; EP=3.0D0; ECM=AM2/AM*EP; LMA=10; 

CC="FAZ-3000.DAT" 

!AA="4000.dat"; NT=28; BB="p2H-4000.DAT"; EP=4.0D0; ECM=AM2/AM*EP; LMA=6; 

CC="FAZ-4000.DAT" 

!AA="5000.dat"; NT=28; BB="p2H-5000.DAT"; EP=5.0D0; ECM=AM2/AM*EP; LMA=10; 

CC="FAZ-5000.DAT" 

!AA="6000.dat"; NT=28; BB="p2H-6000.DAT"; EP=6.0D0; ECM=AM2/AM*EP; LMA=4; 

CC="FAZ-6000.DAT" 

!AA="8000.dat"; NT=28; BB="p2H-8000.DAT"; EP=8.0D0; ECM=AM2/AM*EP; LMA=5; 

CC="FAZ-8000.DAT" 

!AA="10000.dat"; NT=27; BB="p2H-10000.DAT"; EP=10.0D0; ECM=AM2/AM*EP; LMA=4; 

CC="FAZ-10000.DAT" 

SK=ECM*B1; SS=DSQRT(SK); GG=3.4495312D-2*Z1*Z2*PM/SS ! КУЛОНОВСКИЙ ПАРАМЕТР 
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EP=1.0D-015; NP=2*LMA; NPP=6*LMA+6 

OPEN (1,FILE=AA) 

DO L=1,NT 

READ(1,*) EP,TT(L),SE(L),DE(L) 

!PRINT *,  EP,TT(L),SE(L),DE(L) 

ENDDO 

CLOSE(1) 

 

 

!PHASE SHIFTS FOR L FROM 0 TO LMA 

IF(ECM<1.0) THEN  

 

IF(ECM>0.5D0) THEN  

FP12D(0)=-10.53D0  ! 2S12 

FM12D(0)= 0.0D0    ! 2S-12 = 0 

FP12D(1)=-3.42D0   ! 2P32 

FM12D(1)=-2.91D0   ! 2P12 

 

FP32Q(0)=-36.81D0  ! 4S32 

FP12Q(0)=0.0D0     ! 4S12 =  0  

FM12Q(0)=0.0D0     ! 4S-12 = 0     

FM32Q(0)=0.0D0     ! 4S-32 = 0  

 

FP32Q(1)=10.14D0   ! 4P52  

FP12Q(1)=10.62D0   ! 4P32 

FM12Q(1)=9.18D0    ! 4P12 

FM32Q(1)=0.0D0     ! 4P-12 = 0 

ELSE 

FP12D(0)=-7.64D0   ! 2S12 

FM12D(0)= 0.0D0    ! 2S-12 = 0 

FP12D(1)=-1.61D0   ! 2P32 

FM12D(1)=-2.17D0   ! 2P12 

 

FP32Q(0)=-27.48D0  ! 4S32 

FP12Q(0)=0.0D0     ! 4S12 =  0  

FM12Q(0)=0.0D0     ! 4S-12 = 0     

FM32Q(0)=0.0D0     ! 4S-32 = 0  

 

FP32Q(1)=5.69D0    ! 4P52  

FP12Q(1)=6.19D0    ! 4P32 

FM12Q(1)=5.06D0    ! 4P12 

FM32Q(1)=0.0D0     ! 4P-12 = 0 

ENDIF 

ELSE 

FP12D(0)=-23.69D0   ! 2S12 

FM12D(0)= 0.0D0     ! 2S-12 = 0 

FP12D(1)=-2.18D0    ! 2P32 

FM12D(1)=-3.39D0    ! 2P12 

 

FP12D(2)=-1.67D0   ! 2D32 

FM12D(2)= 0.7D0    ! 2D12 

FP12D(3)=-1.65D0   ! 2F72 

FM12D(3)=-1.65D0   ! 2F52 

FP12D(4)=0.39D0    ! 2G92 

FM12D(4)=0.39D0    ! 2G72 

 

FP32Q(0)=-68.57D0  ! 4S32 

FP12Q(0)=0.0D0     ! 4S12 =  0  

FM12Q(0)=0.0D0     ! 4S-12 = 0     

FM32Q(0)=0.0D0     ! 4S-32 = 0  
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FP32Q(1)=24.26D0    ! 4P52  

FP12Q(1)=22.98D0    ! 4P32 

FM12Q(1)=22.70D0    ! 4P12 

FM32Q(1)=0.0D0      ! 4P-12 = 0 

 

FP32Q(2)=-4.51D0    ! 4D72  

FP12Q(2)=-5.47D0    ! 4D52 

FM12Q(2)=-4.68D0    ! 4D32 

FM32Q(2)=-4.26D0    ! 4D12  

 

FP32Q(3)=0.85D0    ! 4F92  

FP12Q(3)=0.85D0    ! 4F72 

FM12Q(3)=0.85D0    ! 4F52 

FM32Q(3)=0.85D0    ! 4F32  

 

FP32Q(4)=-0.34D0    ! 4G112  

FP12Q(4)=-0.34D0    ! 4G92 

FM12Q(4)=-0.34D0    ! 4G72 

FM32Q(4)=-0.34D0    ! 4G52  

ENDIF 

 

NV=1;  

FH=0.123D0 

NI=1;  

 

K=1 

IF(K==1) THEN 

OPEN (1,FILE=CC) 

DO I=0,LMA 

READ(1,*) FP12D(I),FM12D(I),FP12Q(I),FM12Q(I),FP32Q(I),FM32Q(I) 

!PRINT*,   FP12D(I),FM12D(I),FP12Q(I),FM12Q(I),FP32Q(I),FM32Q(I) 

ENDDO 

CLOSE(1) 

!STOP 

ENDIF  

! ****************** ENERGY IN LAB. SYSTEM *************************** 

 

DO L=0,LMA 

FP12D(L)=FP12D(L)*PI/180.0D0 

FM12D(L)=FM12D(L)*PI/180.0D0 

FP32Q(L)=FP32Q(L)*PI/180.0D0 

FP12Q(L)=FP12Q(L)*PI/180.0D0 

FM12Q(L)=FM12Q(L)*PI/180.0D0 

FM32Q(L)=FM32Q(L)*PI/180.0D0 

ENDDO 

FH=FH*PI/180.0D0 

 

DO J=0,LMA 

XP(J*6)=  FP12D(J) 

XP(J*6+1)=FP12Q(J) 

XP(J*6+2)=FP32Q(J) 

XP(J*6+3)=FM12D(J) 

XP(J*6+4)=FM12Q(J) 

XP(J*6+5)=FM32Q(J) 

ENDDO 

 

!   ***************** TRANSFORM TO C.M. *************************** 

 

CALL VAR(XP,FH,NI,EP,XI,NV) 

 

! ******************* TOTAL CROSSS SECTION ************************* 
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DO J=0,LMA 

FP12D(J)=XP(J*6) 

FP12Q(J)=XP(J*6+1) 

FP32Q(J)=XP(J*6+2) 

FM12D(J)=XP(J*6+3) 

FM12Q(J)=XP(J*6+4) 

FM32Q(J)=XP(J*6+5) 

ENDDO 

 

DO L=0,LMA 

FP12D(L)=FP12D(L)/PI*180.0D0 

FM12D(L)=FM12D(L)/PI*180.0D0 

FP32Q(L)=FP32Q(L)/PI*180.0D0 

FP12Q(L)=FP12Q(L)/PI*180.0D0 

FM12Q(L)=FM12Q(L)/PI*180.0D0 

FM32Q(L)=FM32Q(L)/PI*180.0D0 

ENDDO 

 

PRINT*, "---------------------------------------------------------" 

!PRINT *,"      T          SE          ST          XI" 

DO I=1,NT 

!WRITE(*,100) TT(I),SE(I),ST(I),DS(I),CULKV(i) 

ENDDO 

 

PRINT * 

PRINT *,"   XI=    ",XI 

PRINT * 

 

OPEN (1,FILE=BB) 

WRITE(1,*) " ECM=  ",ECM 

WRITE(1,*) " XI=   ",XI 

 

WRITE(1,*) "        T               SE               DSE                 ST             

XI" 

DO I=1,NT 

WRITE(1,200) TT(I),SE(I),DE(I),ST(I),DS(I),CULKV(i) 

ENDDO 

 

WRITE(1,*) '' 

WRITE(1,*) "           FP12D                  FM12D                 FP12Q           

FM12Q        FP32Q         FM32Q" 

DO I=0,LMA 

WRITE(1,*) FP12D(I),FM12D(I),FP12Q(I),FM12Q(I),FP32Q(I),FM32Q(I) 

ENDDO 

 

OPEN (1,FILE=CC) 

DO I=0,LMA 

WRITE(1,*) FP12D(I),FM12D(I),FP12Q(I),FM12Q(I),FP32Q(I),FM32Q(I) 

ENDDO 

CLOSE(1) 

 

DO I=0,LMA 

!WRITE(*,*) FP12D(I),FM12D(I),FP12Q(I),FM12Q(I),FP32Q(I),FM32Q(I) 

ENDDO 

PRINT*, "---------------------------------------------------------" 

100 FORMAT(10E12.4) 

200 FORMAT(10E12.4) 

END 

 

SUBROUTINE VAR(XP,PHN,NI,EP,AMIN,NV) 
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IMPLICIT REAL(8) (A-Z) 

INTEGER I,NI,NT,NV,NP,NN,INE,IIN,NPP 

COMMON /A1/ 

SE(0:100),DS(0:100),DE(0:100),DS1(0:100),ST(0:100),TT(0:100),CULKV(0:100),NT

,NPP,LMA 

COMMON /A5/ PI 

COMMON /BB/ NP 

DIMENSION XPN(0:100),XP(0:100) 

! ****************** DETERMINATING THE MINIMUM *************************** 

DO I=0,NP 

XPN(I)=XP(I) 

ENDDO 

 

NN=0 

PH=PHN 

CALL SEC(XPN,ALA) 

B=ALA 

IF (NV==0) GOTO 3012 

 

!print *,'N=',nn,XPN(nn)*180./PI,ALA 

!PRINT *,"-----------------------------------------------------------------" 

DO IIN=1,NI 

NN=-1 

!PRINT *,'FF=',ALA,IIN 

1119  NN=NN+1 

INE=0 

2229 A=B 

XPN(NN)=XPN(NN)+PH*xp(nn) 

INE=INE+1 

! -------------------------------------------------------------------- 

CALL SEC(XPN,ALA) 

B=ALA 

! -------------------------------------------------------------------- 

IF (B<A) GOTO 2229 

C=A 

XPN(NN)=XPN(NN)-PH*xp(nn) 

IF (INE>1) GOTO 3339 

PH=-PH 

GOTO 5559 

 

3339 IF (ABS((C-B)/(B))<EP) GOTO 4449 

PH=PH/2.0D-000 

5559 B=C 

GOTO 2229 

 

4449 PH=PHN 

B=C 

IF (NN<NP) GOTO 1119 

AMIN=B 

PH=PHN 

ENDDO 

3012 AMIN=B 

 

DO I=0,NP 

XP(I)=XPN(I) 

ENDDO 

 

END 

 

SUBROUTINE SEC(XP,XI) 

IMPLICIT DOUBLE COMPLEX(8) (A-Z) 
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REAL(8) GG,SS,PI,X,T,SCU,SECD,SECQ,SQ1,SQ2,SDA,SDB,SD,SQ,CULKV 

REAL(8) SE,DS,DE,DS1,TT,ST,XI,S 

REAL(8) 

FP12D(0:100),FM12D(0:100),FP32Q(0:100),FM32Q(0:100),FP12Q(0:100),FM12Q(0:100

) 

REAL(8) P0(0:100),P1(0:100),P2(0:100),P3(0:100),AL(0:100),XP(0:100) 

INTEGER NT,LMA,L,NP,N,J,NPP 

COMMON /A1/ 

SE(0:100),DS(0:100),DE(0:100),DS1(0:100),ST(0:100),TT(0:100),CULKV(0:100),NT

,NP,LMA 

COMMON /A2/ GG,SS 

COMMON /A5/ PI 

COMMON /BB/ NPP 

DIMENSION SCUL(0:100),SP12D(0:100),SM12D(0:100),  SP32Q(0:100),SM32Q(0:100),  

SP12Q(0:100),SM12Q(0:100) 

I=(0,1) 

 

DO J=0,LMA 

FP12D(J)=XP(J*6) 

FP12Q(J)=XP(J*6+1) 

FP32Q(J)=XP(J*6+2) 

FM12D(J)=XP(J*6+3) 

FM12Q(J)=XP(J*6+4) 

FM32Q(J)=XP(J*6+5) 

ENDDO 

 

CCD=-0.5D0/SS*I; CCQ=-0.25D0/SS*I  

 

DO J=1,NT 

 

AA2=(0,0);BB2=(0,0);CC4=(0,0);DD4=(0,0);EE4=(0,0);FF4=(0,0);GG4=(0,0);HH4=(0

,0);II4=(0,0);JJ4=(0,0) 

T=TT(J)*PI/180.0D0; X=COS(T) 

CALL FUNLEG0(X,LMA,P0); CALL FUNLEG1(X,LMA,P1); CALL FUNLEG2(X,LMA,P2); CALL 

FUNLEG3(X,LMA,P3) 

 

AL(0)=0.0D0  

DO N=1,LMA  

AL(N)=AL(N-1)+ATAN(GG/N)  

ENDDO 

 

SCU=1.0D0/SIN(T/2.0D0)**2;                                         

CUL=-GG/(2.0D0*SS)*SCU*EXP( I*GG*LOG(SCU)) 

CULKV(J)=ABS(CUL)**2*10.0D0;  

 

DO L=0,LMA 

SP12D(L)=EXP(2.0D0*I*FP12D(L))-1.0;SM12D(L)=EXP(2.0D0*I*FM12D(L))-

1.0;SCUL(L)=EXP(2.0D0*I*AL(L)) 

AA2=AA2+((L+1.0)*SP12D(L)+L*SM12D(L))*P0(L)*SCUL(L)  

BB2=BB2+(SP12D(L)-SM12D(L))*P1(L)*SCUL(L) 

ENDDO 

AA2CUL=CCD*AA2+CUL; 

 

DO L=0,LMA 

SP12Q(L)=EXP(2.0D0*I*FP12Q(L))-1.0; SM12Q(L)=EXP(2.0D0*I*FM12Q(L))-1.0 

SP32Q(L)=EXP(2.0D0*I*FP32Q(L))-1.0; SM32Q(L)=EXP(2.0D0*I*FM32Q(L))-1.0 

!LL1=L+1.0; LL2=L+2.0;LL3=L+3.0;LM1=L-

1.0;DL1=2.0*L+1.0;DL2=2.0*L+2.0;DL3=2.0*L+3.0;DLM1=2.0*L-1.0; 

!CC4=CC4+(3.0*LL1*LL2/DL3*SP32Q(L)+L*LL1/DL3*SP12Q(L)+L*LL1/DLM1*SM12Q(L)+3.

0*L*LM1/DLM1*SM32Q(L))*P0(L)*SCUL(L) 
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!DD4=DD4+(LL2*LL3/DL3*SP32Q(L)+3.0*LL1*LL2/DL3*SP12Q(L)+3.0*L*LM1/DLM1*SM12Q

(L)+LM1*LL2/DL2*SM32Q(L))*P0(L)*SCUL(L) 

 

CC4=CC4+( 

3.0*(L+1.0)*(L+2.0)/(2.0*L+3.0)*SP32Q(L)+L*(L+1.0)/(2.0*L+3.0)*SP12Q(L)+L*(L

+1.0)/(2.0*L-1.0)*SM12Q(L)+& 

3.0*L*(L-1.0)/(2.0*L-1.0)*SM32Q(L) )*P0(L)*SCUL(L) 

DD4=DD4+( 

(L+2.0)*(L+3.0)/(2.0*L+3.0)*SP32Q(L)+3.0*(L+1.0)*(L+2.0)/(2.0*L+3.0)*SP12Q(L

)+3.0*L*(L-1.0)/(2.0*L-1.0)*SM12Q(L)+& 

(L-1.0)*(L-2.0)/(2.0*L-1.0)*SM32Q(L) )*P0(L)*SCUL(L) 

ENDDO 

CC4CUL=CCQ*CC4+CUL; DD4CUL=CCQ*DD4+CUL   

 

DO L=1,LMA  

EE4=EE4+(3.0*(L+2.0)/(2.0*L+3.0)*SP32Q(L)-(L+3.0)/(2.0*L+3.0)*SP12Q(L)+(L-

2.0)/(2.0*L-1.0)*SM12Q(L)-3.0*(L-1.0)/(2.0*L-1.0)*& 

SM32Q(L))*P1(L)*SCUL(L) 

FF4=FF4+sqrt(3.0)*( 

(L+2.0)/(2.0*L+3.0)*SP32Q(L)+(L+1.0)/(2.0*L+3.0)*SP12Q(L)-L/(2.0*L-

1.0)*SM12Q(L)-(L-1.0)/(2.0*L-1.0)& 

*SM32Q(L) )*P1(L)*SCUL(L) 

GG4=GG4+sqrt(3.0)*( 

(L+3.0)*(L+2.0)/((L+1.0)*(2.0*L+3.0))*SP32Q(L)+(L+2.0)*(L-

3.0)/(L*(2.0*L+3.0))*SP12Q(L)-& 

(L+4.0)*(L-1.0)/((L+1.0)*(2.0*L-1.0))*SM12Q(L)-(L-1.0)*(L-2.0)/(L*(2.0*L-

1.0))*SM32Q(L) )*P1(L)*SCUL(L) 

ENDDO 

EE4=-EE4; FF4=-FF4; GG4=-GG4 

 

DO L=2,LMA 

HH4=HH4+sqrt(3.0)*((1.0/(2.0*L+3.0)*SP32Q(L)-1.0/(2.0*L+3.0)*SP12Q(L)-

1.0/(2.0*L-1.0)*SM12Q(L)+& 

1.0/(2.0*L-1.0)*SM32Q(L))*P2(L))*SCUL(L)   

II4=II4+sqrt(3.0)*(((L+3.0)/((L+1.0)*(2.0*L+3.0))*SP32Q(L)-

(L+6.0)/(L*(2.0*L+3.0))*SP12Q(L)-& 

(L-5)/((L+1.0)*(2.0*L-1.0))*SM12Q(L)+(L-2.0)/(L*(2.0*L-1.0))& 

*SM32Q(L))*P2(L))*SCUL(L) 

ENDDO 

 

DO L=3,LMA 

JJ4=JJ4-(1.0/((L+1.0)*(2.0*L+3.0))*SP32Q(L)-

3.0/(L*(2.0*L+3.0))*SP12Q(L)+3.0/((L+1.0)*(2.0*L-1.0))*SM12Q(L)-& 

1.0/(L*(2.0*L-1.0))*SM32Q(L))*P3(L)*SCUL(L) 

ENDDO 

 

SDA=ABS(AA2CUL)**2; SDB=ABS(CCD*BB2)**2  

SD=(SDA+SDB)*10.0D0 

SQ1=ABS(CC4CUL)**2+ABS(DD4CUL)**2; 

SQ2=ABS(CCQ*EE4)**2+ABS(CCQ*FF4)**2+ABS(CCQ*GG4)**2+ABS(CCQ*HH4)**2+ABS(CCQ*

II4)**2+& 

ABS(CCQ*JJ4)**2  

SQ=(SQ1+SQ2)*10.0D0 

 

SECD=1.0D0/3.0D0*SD 

SECQ=2.0D0/3.0D0*SQ/2.0D0 

ST(J)=SECD+SECQ 

 

ENDDO 

 

S=0.0D0 



129 

 

DO J=1,NT 

DS(J)=((ST(J)-SE(J))/DE(J))**2 

S=S+DS(J) 

ENDDO 

XI=S/NT 

 

END 

 

SUBROUTINE FUNLEG0(X,L,P0) 

IMPLICIT REAL(8) (A-Z) 

INTEGER I,L 

DIMENSION P0(0:50) 

P0(0)=1.0D0; P0(1)=X 

DO I=2,L 

P0(I)=(2.0D0*I-1.0D0)*X/I*P0(I-1)-(I-1.0D0)/I*P0(I-2) 

ENDDO 

END  

 

SUBROUTINE FUNLEG1(X,L,P1) 

IMPLICIT REAL(8) (A-Z) 

INTEGER I,L 

DIMENSION P1(0:50) 

P1(0)=0.0D0; P1(1)=(1.0D0-X**2)**0.5; P1(2)=3.0D0*X*P1(1) 

!IF (L>=3) THEN 

DO I=2,L 

P1(I+1)=(2.0D0*I+1.0D0)*X/I*P1(I)-(I+1.0D0)/I*P1(I-1) 

ENDDO 

!ENDIF 

END  

 

SUBROUTINE FUNLEG2(X,L,P2) 

IMPLICIT REAL(8) (A-Z) 

INTEGER I,L 

DIMENSION P2(0:50) 

P2(0)=0.0D0; P2(1)=0.0D0; P2(2)=3.0D0*(1.0D0-X**2) 

DO I=2,L 

P2(I+1)=(2.0D0*I+1.0D0)*X/I*P2(I)-(I+1.0D0)/I*P2(I-1) 

ENDDO 

END  

 

SUBROUTINE FUNLEG3(X,L,P3) 

IMPLICIT REAL(8) (A-Z) 

INTEGER I,L 

DIMENSION P3(0:50) 

P3(0)=0.0D0; P3(1)=0.0D0; P3(2)=0.0D0; P3(3)=15.0D0*(1.0D0-X**2)**1.5 

DO I=3,L 

P3(I+1)=(2.0D0*I+1.0D0)*X/I*P3(I)-(I+1.0D0)/I*P3(I-1) 

ENDDO 

END  


